This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for dvcnvre . (Contributed by Mario Carneiro, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvcnvre.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 –cn→ ℝ ) ) | |
| dvcnvre.d | ⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = 𝑋 ) | ||
| dvcnvre.z | ⊢ ( 𝜑 → ¬ 0 ∈ ran ( ℝ D 𝐹 ) ) | ||
| dvcnvre.1 | ⊢ ( 𝜑 → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) | ||
| dvcnvre.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | ||
| dvcnvre.r | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | ||
| dvcnvre.s | ⊢ ( 𝜑 → ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ⊆ 𝑋 ) | ||
| Assertion | dvcnvrelem1 | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvcnvre.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 –cn→ ℝ ) ) | |
| 2 | dvcnvre.d | ⊢ ( 𝜑 → dom ( ℝ D 𝐹 ) = 𝑋 ) | |
| 3 | dvcnvre.z | ⊢ ( 𝜑 → ¬ 0 ∈ ran ( ℝ D 𝐹 ) ) | |
| 4 | dvcnvre.1 | ⊢ ( 𝜑 → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) | |
| 5 | dvcnvre.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑋 ) | |
| 6 | dvcnvre.r | ⊢ ( 𝜑 → 𝑅 ∈ ℝ+ ) | |
| 7 | dvcnvre.s | ⊢ ( 𝜑 → ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ⊆ 𝑋 ) | |
| 8 | dvbsss | ⊢ dom ( ℝ D 𝐹 ) ⊆ ℝ | |
| 9 | 2 8 | eqsstrrdi | ⊢ ( 𝜑 → 𝑋 ⊆ ℝ ) |
| 10 | 9 5 | sseldd | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 11 | 6 | rpred | ⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
| 12 | 10 11 | resubcld | ⊢ ( 𝜑 → ( 𝐶 − 𝑅 ) ∈ ℝ ) |
| 13 | 10 11 | readdcld | ⊢ ( 𝜑 → ( 𝐶 + 𝑅 ) ∈ ℝ ) |
| 14 | 10 6 | ltsubrpd | ⊢ ( 𝜑 → ( 𝐶 − 𝑅 ) < 𝐶 ) |
| 15 | 10 6 | ltaddrpd | ⊢ ( 𝜑 → 𝐶 < ( 𝐶 + 𝑅 ) ) |
| 16 | 12 10 13 14 15 | lttrd | ⊢ ( 𝜑 → ( 𝐶 − 𝑅 ) < ( 𝐶 + 𝑅 ) ) |
| 17 | 12 13 16 | ltled | ⊢ ( 𝜑 → ( 𝐶 − 𝑅 ) ≤ ( 𝐶 + 𝑅 ) ) |
| 18 | rescncf | ⊢ ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ⊆ 𝑋 → ( 𝐹 ∈ ( 𝑋 –cn→ ℝ ) → ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) –cn→ ℝ ) ) ) | |
| 19 | 7 1 18 | sylc | ⊢ ( 𝜑 → ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ∈ ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) –cn→ ℝ ) ) |
| 20 | 12 13 17 19 | evthicc2 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) |
| 21 | cncff | ⊢ ( 𝐹 ∈ ( 𝑋 –cn→ ℝ ) → 𝐹 : 𝑋 ⟶ ℝ ) | |
| 22 | 1 21 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℝ ) |
| 23 | 22 5 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ℝ ) |
| 24 | 23 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( 𝐹 ‘ 𝐶 ) ∈ ℝ ) |
| 25 | 12 | rexrd | ⊢ ( 𝜑 → ( 𝐶 − 𝑅 ) ∈ ℝ* ) |
| 26 | 13 | rexrd | ⊢ ( 𝜑 → ( 𝐶 + 𝑅 ) ∈ ℝ* ) |
| 27 | lbicc2 | ⊢ ( ( ( 𝐶 − 𝑅 ) ∈ ℝ* ∧ ( 𝐶 + 𝑅 ) ∈ ℝ* ∧ ( 𝐶 − 𝑅 ) ≤ ( 𝐶 + 𝑅 ) ) → ( 𝐶 − 𝑅 ) ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) | |
| 28 | 25 26 17 27 | syl3anc | ⊢ ( 𝜑 → ( 𝐶 − 𝑅 ) ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) |
| 29 | 28 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( 𝐶 − 𝑅 ) ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) |
| 30 | 12 10 14 | ltled | ⊢ ( 𝜑 → ( 𝐶 − 𝑅 ) ≤ 𝐶 ) |
| 31 | 10 13 15 | ltled | ⊢ ( 𝜑 → 𝐶 ≤ ( 𝐶 + 𝑅 ) ) |
| 32 | elicc2 | ⊢ ( ( ( 𝐶 − 𝑅 ) ∈ ℝ ∧ ( 𝐶 + 𝑅 ) ∈ ℝ ) → ( 𝐶 ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ↔ ( 𝐶 ∈ ℝ ∧ ( 𝐶 − 𝑅 ) ≤ 𝐶 ∧ 𝐶 ≤ ( 𝐶 + 𝑅 ) ) ) ) | |
| 33 | 12 13 32 | syl2anc | ⊢ ( 𝜑 → ( 𝐶 ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ↔ ( 𝐶 ∈ ℝ ∧ ( 𝐶 − 𝑅 ) ≤ 𝐶 ∧ 𝐶 ≤ ( 𝐶 + 𝑅 ) ) ) ) |
| 34 | 10 30 31 33 | mpbir3and | ⊢ ( 𝜑 → 𝐶 ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) |
| 35 | 34 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → 𝐶 ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) |
| 36 | 14 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( 𝐶 − 𝑅 ) < 𝐶 ) |
| 37 | isorel | ⊢ ( ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) Isom < , < ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) , ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ∧ ( ( 𝐶 − 𝑅 ) ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ∧ 𝐶 ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) → ( ( 𝐶 − 𝑅 ) < 𝐶 ↔ ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ ( 𝐶 − 𝑅 ) ) < ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ 𝐶 ) ) ) | |
| 38 | 37 | biimpd | ⊢ ( ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) Isom < , < ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) , ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ∧ ( ( 𝐶 − 𝑅 ) ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ∧ 𝐶 ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) → ( ( 𝐶 − 𝑅 ) < 𝐶 → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ ( 𝐶 − 𝑅 ) ) < ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ 𝐶 ) ) ) |
| 39 | 38 | exp32 | ⊢ ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) Isom < , < ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) , ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) → ( ( 𝐶 − 𝑅 ) ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) → ( 𝐶 ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) → ( ( 𝐶 − 𝑅 ) < 𝐶 → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ ( 𝐶 − 𝑅 ) ) < ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ 𝐶 ) ) ) ) ) |
| 40 | 39 | com4l | ⊢ ( ( 𝐶 − 𝑅 ) ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) → ( 𝐶 ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) → ( ( 𝐶 − 𝑅 ) < 𝐶 → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) Isom < , < ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) , ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ ( 𝐶 − 𝑅 ) ) < ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ 𝐶 ) ) ) ) ) |
| 41 | 29 35 36 40 | syl3c | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) Isom < , < ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) , ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ ( 𝐶 − 𝑅 ) ) < ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ 𝐶 ) ) ) |
| 42 | 29 | fvresd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ ( 𝐶 − 𝑅 ) ) = ( 𝐹 ‘ ( 𝐶 − 𝑅 ) ) ) |
| 43 | 35 | fvresd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ 𝐶 ) = ( 𝐹 ‘ 𝐶 ) ) |
| 44 | 42 43 | breq12d | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ ( 𝐶 − 𝑅 ) ) < ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ 𝐶 ) ↔ ( 𝐹 ‘ ( 𝐶 − 𝑅 ) ) < ( 𝐹 ‘ 𝐶 ) ) ) |
| 45 | 41 44 | sylibd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) Isom < , < ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) , ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) → ( 𝐹 ‘ ( 𝐶 − 𝑅 ) ) < ( 𝐹 ‘ 𝐶 ) ) ) |
| 46 | 22 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → 𝐹 : 𝑋 ⟶ ℝ ) |
| 47 | 46 | ffund | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → Fun 𝐹 ) |
| 48 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ⊆ 𝑋 ) |
| 49 | 46 | fdmd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → dom 𝐹 = 𝑋 ) |
| 50 | 48 49 | sseqtrrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ⊆ dom 𝐹 ) |
| 51 | funfvima2 | ⊢ ( ( Fun 𝐹 ∧ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ⊆ dom 𝐹 ) → ( ( 𝐶 − 𝑅 ) ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) → ( 𝐹 ‘ ( 𝐶 − 𝑅 ) ) ∈ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) | |
| 52 | 47 50 51 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( 𝐶 − 𝑅 ) ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) → ( 𝐹 ‘ ( 𝐶 − 𝑅 ) ) ∈ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
| 53 | 29 52 | mpd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( 𝐹 ‘ ( 𝐶 − 𝑅 ) ) ∈ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) |
| 54 | df-ima | ⊢ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) | |
| 55 | simprr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) | |
| 56 | 54 55 | eqtrid | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) |
| 57 | 53 56 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( 𝐹 ‘ ( 𝐶 − 𝑅 ) ) ∈ ( 𝑥 [,] 𝑦 ) ) |
| 58 | elicc2 | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝐹 ‘ ( 𝐶 − 𝑅 ) ) ∈ ( 𝑥 [,] 𝑦 ) ↔ ( ( 𝐹 ‘ ( 𝐶 − 𝑅 ) ) ∈ ℝ ∧ 𝑥 ≤ ( 𝐹 ‘ ( 𝐶 − 𝑅 ) ) ∧ ( 𝐹 ‘ ( 𝐶 − 𝑅 ) ) ≤ 𝑦 ) ) ) | |
| 59 | 58 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( 𝐹 ‘ ( 𝐶 − 𝑅 ) ) ∈ ( 𝑥 [,] 𝑦 ) ↔ ( ( 𝐹 ‘ ( 𝐶 − 𝑅 ) ) ∈ ℝ ∧ 𝑥 ≤ ( 𝐹 ‘ ( 𝐶 − 𝑅 ) ) ∧ ( 𝐹 ‘ ( 𝐶 − 𝑅 ) ) ≤ 𝑦 ) ) ) |
| 60 | 57 59 | mpbid | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( 𝐹 ‘ ( 𝐶 − 𝑅 ) ) ∈ ℝ ∧ 𝑥 ≤ ( 𝐹 ‘ ( 𝐶 − 𝑅 ) ) ∧ ( 𝐹 ‘ ( 𝐶 − 𝑅 ) ) ≤ 𝑦 ) ) |
| 61 | 60 | simp2d | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → 𝑥 ≤ ( 𝐹 ‘ ( 𝐶 − 𝑅 ) ) ) |
| 62 | simprll | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → 𝑥 ∈ ℝ ) | |
| 63 | 7 28 | sseldd | ⊢ ( 𝜑 → ( 𝐶 − 𝑅 ) ∈ 𝑋 ) |
| 64 | 22 63 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐶 − 𝑅 ) ) ∈ ℝ ) |
| 65 | 64 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( 𝐹 ‘ ( 𝐶 − 𝑅 ) ) ∈ ℝ ) |
| 66 | lelttr | ⊢ ( ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐶 − 𝑅 ) ) ∈ ℝ ∧ ( 𝐹 ‘ 𝐶 ) ∈ ℝ ) → ( ( 𝑥 ≤ ( 𝐹 ‘ ( 𝐶 − 𝑅 ) ) ∧ ( 𝐹 ‘ ( 𝐶 − 𝑅 ) ) < ( 𝐹 ‘ 𝐶 ) ) → 𝑥 < ( 𝐹 ‘ 𝐶 ) ) ) | |
| 67 | 62 65 24 66 | syl3anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( 𝑥 ≤ ( 𝐹 ‘ ( 𝐶 − 𝑅 ) ) ∧ ( 𝐹 ‘ ( 𝐶 − 𝑅 ) ) < ( 𝐹 ‘ 𝐶 ) ) → 𝑥 < ( 𝐹 ‘ 𝐶 ) ) ) |
| 68 | 61 67 | mpand | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( 𝐹 ‘ ( 𝐶 − 𝑅 ) ) < ( 𝐹 ‘ 𝐶 ) → 𝑥 < ( 𝐹 ‘ 𝐶 ) ) ) |
| 69 | 45 68 | syld | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) Isom < , < ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) , ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) → 𝑥 < ( 𝐹 ‘ 𝐶 ) ) ) |
| 70 | ubicc2 | ⊢ ( ( ( 𝐶 − 𝑅 ) ∈ ℝ* ∧ ( 𝐶 + 𝑅 ) ∈ ℝ* ∧ ( 𝐶 − 𝑅 ) ≤ ( 𝐶 + 𝑅 ) ) → ( 𝐶 + 𝑅 ) ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) | |
| 71 | 25 26 17 70 | syl3anc | ⊢ ( 𝜑 → ( 𝐶 + 𝑅 ) ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) |
| 72 | 71 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( 𝐶 + 𝑅 ) ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) |
| 73 | 15 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → 𝐶 < ( 𝐶 + 𝑅 ) ) |
| 74 | isorel | ⊢ ( ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) Isom < , ◡ < ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) , ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ∧ ( 𝐶 ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ∧ ( 𝐶 + 𝑅 ) ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) → ( 𝐶 < ( 𝐶 + 𝑅 ) ↔ ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ 𝐶 ) ◡ < ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ ( 𝐶 + 𝑅 ) ) ) ) | |
| 75 | 74 | biimpd | ⊢ ( ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) Isom < , ◡ < ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) , ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ∧ ( 𝐶 ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ∧ ( 𝐶 + 𝑅 ) ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) → ( 𝐶 < ( 𝐶 + 𝑅 ) → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ 𝐶 ) ◡ < ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ ( 𝐶 + 𝑅 ) ) ) ) |
| 76 | 75 | exp32 | ⊢ ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) Isom < , ◡ < ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) , ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) → ( 𝐶 ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) → ( ( 𝐶 + 𝑅 ) ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) → ( 𝐶 < ( 𝐶 + 𝑅 ) → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ 𝐶 ) ◡ < ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ ( 𝐶 + 𝑅 ) ) ) ) ) ) |
| 77 | 76 | com4l | ⊢ ( 𝐶 ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) → ( ( 𝐶 + 𝑅 ) ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) → ( 𝐶 < ( 𝐶 + 𝑅 ) → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) Isom < , ◡ < ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) , ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ 𝐶 ) ◡ < ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ ( 𝐶 + 𝑅 ) ) ) ) ) ) |
| 78 | 35 72 73 77 | syl3c | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) Isom < , ◡ < ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) , ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ 𝐶 ) ◡ < ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ ( 𝐶 + 𝑅 ) ) ) ) |
| 79 | fvex | ⊢ ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ 𝐶 ) ∈ V | |
| 80 | fvex | ⊢ ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ ( 𝐶 + 𝑅 ) ) ∈ V | |
| 81 | 79 80 | brcnv | ⊢ ( ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ 𝐶 ) ◡ < ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ ( 𝐶 + 𝑅 ) ) ↔ ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ ( 𝐶 + 𝑅 ) ) < ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ 𝐶 ) ) |
| 82 | 72 | fvresd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ ( 𝐶 + 𝑅 ) ) = ( 𝐹 ‘ ( 𝐶 + 𝑅 ) ) ) |
| 83 | 82 43 | breq12d | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ ( 𝐶 + 𝑅 ) ) < ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ 𝐶 ) ↔ ( 𝐹 ‘ ( 𝐶 + 𝑅 ) ) < ( 𝐹 ‘ 𝐶 ) ) ) |
| 84 | 81 83 | bitrid | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ 𝐶 ) ◡ < ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ ( 𝐶 + 𝑅 ) ) ↔ ( 𝐹 ‘ ( 𝐶 + 𝑅 ) ) < ( 𝐹 ‘ 𝐶 ) ) ) |
| 85 | 78 84 | sylibd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) Isom < , ◡ < ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) , ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) → ( 𝐹 ‘ ( 𝐶 + 𝑅 ) ) < ( 𝐹 ‘ 𝐶 ) ) ) |
| 86 | funfvima2 | ⊢ ( ( Fun 𝐹 ∧ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ⊆ dom 𝐹 ) → ( ( 𝐶 + 𝑅 ) ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) → ( 𝐹 ‘ ( 𝐶 + 𝑅 ) ) ∈ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) | |
| 87 | 47 50 86 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( 𝐶 + 𝑅 ) ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) → ( 𝐹 ‘ ( 𝐶 + 𝑅 ) ) ∈ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
| 88 | 72 87 | mpd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( 𝐹 ‘ ( 𝐶 + 𝑅 ) ) ∈ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) |
| 89 | 88 56 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( 𝐹 ‘ ( 𝐶 + 𝑅 ) ) ∈ ( 𝑥 [,] 𝑦 ) ) |
| 90 | elicc2 | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝐹 ‘ ( 𝐶 + 𝑅 ) ) ∈ ( 𝑥 [,] 𝑦 ) ↔ ( ( 𝐹 ‘ ( 𝐶 + 𝑅 ) ) ∈ ℝ ∧ 𝑥 ≤ ( 𝐹 ‘ ( 𝐶 + 𝑅 ) ) ∧ ( 𝐹 ‘ ( 𝐶 + 𝑅 ) ) ≤ 𝑦 ) ) ) | |
| 91 | 90 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( 𝐹 ‘ ( 𝐶 + 𝑅 ) ) ∈ ( 𝑥 [,] 𝑦 ) ↔ ( ( 𝐹 ‘ ( 𝐶 + 𝑅 ) ) ∈ ℝ ∧ 𝑥 ≤ ( 𝐹 ‘ ( 𝐶 + 𝑅 ) ) ∧ ( 𝐹 ‘ ( 𝐶 + 𝑅 ) ) ≤ 𝑦 ) ) ) |
| 92 | 89 91 | mpbid | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( 𝐹 ‘ ( 𝐶 + 𝑅 ) ) ∈ ℝ ∧ 𝑥 ≤ ( 𝐹 ‘ ( 𝐶 + 𝑅 ) ) ∧ ( 𝐹 ‘ ( 𝐶 + 𝑅 ) ) ≤ 𝑦 ) ) |
| 93 | 92 | simp2d | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → 𝑥 ≤ ( 𝐹 ‘ ( 𝐶 + 𝑅 ) ) ) |
| 94 | 7 71 | sseldd | ⊢ ( 𝜑 → ( 𝐶 + 𝑅 ) ∈ 𝑋 ) |
| 95 | 22 94 | ffvelcdmd | ⊢ ( 𝜑 → ( 𝐹 ‘ ( 𝐶 + 𝑅 ) ) ∈ ℝ ) |
| 96 | 95 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( 𝐹 ‘ ( 𝐶 + 𝑅 ) ) ∈ ℝ ) |
| 97 | lelttr | ⊢ ( ( 𝑥 ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐶 + 𝑅 ) ) ∈ ℝ ∧ ( 𝐹 ‘ 𝐶 ) ∈ ℝ ) → ( ( 𝑥 ≤ ( 𝐹 ‘ ( 𝐶 + 𝑅 ) ) ∧ ( 𝐹 ‘ ( 𝐶 + 𝑅 ) ) < ( 𝐹 ‘ 𝐶 ) ) → 𝑥 < ( 𝐹 ‘ 𝐶 ) ) ) | |
| 98 | 62 96 24 97 | syl3anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( 𝑥 ≤ ( 𝐹 ‘ ( 𝐶 + 𝑅 ) ) ∧ ( 𝐹 ‘ ( 𝐶 + 𝑅 ) ) < ( 𝐹 ‘ 𝐶 ) ) → 𝑥 < ( 𝐹 ‘ 𝐶 ) ) ) |
| 99 | 93 98 | mpand | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( 𝐹 ‘ ( 𝐶 + 𝑅 ) ) < ( 𝐹 ‘ 𝐶 ) → 𝑥 < ( 𝐹 ‘ 𝐶 ) ) ) |
| 100 | 85 99 | syld | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) Isom < , ◡ < ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) , ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) → 𝑥 < ( 𝐹 ‘ 𝐶 ) ) ) |
| 101 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 102 | 101 | a1i | ⊢ ( 𝜑 → ℝ ⊆ ℂ ) |
| 103 | fss | ⊢ ( ( 𝐹 : 𝑋 ⟶ ℝ ∧ ℝ ⊆ ℂ ) → 𝐹 : 𝑋 ⟶ ℂ ) | |
| 104 | 22 101 103 | sylancl | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ℂ ) |
| 105 | 7 9 | sstrd | ⊢ ( 𝜑 → ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ⊆ ℝ ) |
| 106 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 107 | tgioo4 | ⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) | |
| 108 | 106 107 | dvres | ⊢ ( ( ( ℝ ⊆ ℂ ∧ 𝐹 : 𝑋 ⟶ ℂ ) ∧ ( 𝑋 ⊆ ℝ ∧ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ⊆ ℝ ) ) → ( ℝ D ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
| 109 | 102 104 9 105 108 | syl22anc | ⊢ ( 𝜑 → ( ℝ D ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
| 110 | iccntr | ⊢ ( ( ( 𝐶 − 𝑅 ) ∈ ℝ ∧ ( 𝐶 + 𝑅 ) ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( ( 𝐶 − 𝑅 ) (,) ( 𝐶 + 𝑅 ) ) ) | |
| 111 | 12 13 110 | syl2anc | ⊢ ( 𝜑 → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( ( 𝐶 − 𝑅 ) (,) ( 𝐶 + 𝑅 ) ) ) |
| 112 | 111 | reseq2d | ⊢ ( 𝜑 → ( ( ℝ D 𝐹 ) ↾ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( 𝐶 − 𝑅 ) (,) ( 𝐶 + 𝑅 ) ) ) ) |
| 113 | 109 112 | eqtrd | ⊢ ( 𝜑 → ( ℝ D ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) = ( ( ℝ D 𝐹 ) ↾ ( ( 𝐶 − 𝑅 ) (,) ( 𝐶 + 𝑅 ) ) ) ) |
| 114 | 113 | dmeqd | ⊢ ( 𝜑 → dom ( ℝ D ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) = dom ( ( ℝ D 𝐹 ) ↾ ( ( 𝐶 − 𝑅 ) (,) ( 𝐶 + 𝑅 ) ) ) ) |
| 115 | dmres | ⊢ dom ( ( ℝ D 𝐹 ) ↾ ( ( 𝐶 − 𝑅 ) (,) ( 𝐶 + 𝑅 ) ) ) = ( ( ( 𝐶 − 𝑅 ) (,) ( 𝐶 + 𝑅 ) ) ∩ dom ( ℝ D 𝐹 ) ) | |
| 116 | ioossicc | ⊢ ( ( 𝐶 − 𝑅 ) (,) ( 𝐶 + 𝑅 ) ) ⊆ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) | |
| 117 | 116 7 | sstrid | ⊢ ( 𝜑 → ( ( 𝐶 − 𝑅 ) (,) ( 𝐶 + 𝑅 ) ) ⊆ 𝑋 ) |
| 118 | 117 2 | sseqtrrd | ⊢ ( 𝜑 → ( ( 𝐶 − 𝑅 ) (,) ( 𝐶 + 𝑅 ) ) ⊆ dom ( ℝ D 𝐹 ) ) |
| 119 | dfss2 | ⊢ ( ( ( 𝐶 − 𝑅 ) (,) ( 𝐶 + 𝑅 ) ) ⊆ dom ( ℝ D 𝐹 ) ↔ ( ( ( 𝐶 − 𝑅 ) (,) ( 𝐶 + 𝑅 ) ) ∩ dom ( ℝ D 𝐹 ) ) = ( ( 𝐶 − 𝑅 ) (,) ( 𝐶 + 𝑅 ) ) ) | |
| 120 | 118 119 | sylib | ⊢ ( 𝜑 → ( ( ( 𝐶 − 𝑅 ) (,) ( 𝐶 + 𝑅 ) ) ∩ dom ( ℝ D 𝐹 ) ) = ( ( 𝐶 − 𝑅 ) (,) ( 𝐶 + 𝑅 ) ) ) |
| 121 | 115 120 | eqtrid | ⊢ ( 𝜑 → dom ( ( ℝ D 𝐹 ) ↾ ( ( 𝐶 − 𝑅 ) (,) ( 𝐶 + 𝑅 ) ) ) = ( ( 𝐶 − 𝑅 ) (,) ( 𝐶 + 𝑅 ) ) ) |
| 122 | 114 121 | eqtrd | ⊢ ( 𝜑 → dom ( ℝ D ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) = ( ( 𝐶 − 𝑅 ) (,) ( 𝐶 + 𝑅 ) ) ) |
| 123 | resss | ⊢ ( ( ℝ D 𝐹 ) ↾ ( ( 𝐶 − 𝑅 ) (,) ( 𝐶 + 𝑅 ) ) ) ⊆ ( ℝ D 𝐹 ) | |
| 124 | 113 123 | eqsstrdi | ⊢ ( 𝜑 → ( ℝ D ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ⊆ ( ℝ D 𝐹 ) ) |
| 125 | rnss | ⊢ ( ( ℝ D ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ⊆ ( ℝ D 𝐹 ) → ran ( ℝ D ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ⊆ ran ( ℝ D 𝐹 ) ) | |
| 126 | 124 125 | syl | ⊢ ( 𝜑 → ran ( ℝ D ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ⊆ ran ( ℝ D 𝐹 ) ) |
| 127 | 126 3 | ssneldd | ⊢ ( 𝜑 → ¬ 0 ∈ ran ( ℝ D ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
| 128 | 12 13 19 122 127 | dvne0 | ⊢ ( 𝜑 → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) Isom < , < ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) , ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ∨ ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) Isom < , ◡ < ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) , ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) ) |
| 129 | 128 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) Isom < , < ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) , ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ∨ ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) Isom < , ◡ < ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) , ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) ) |
| 130 | 69 100 129 | mpjaod | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → 𝑥 < ( 𝐹 ‘ 𝐶 ) ) |
| 131 | isorel | ⊢ ( ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) Isom < , < ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) , ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ∧ ( 𝐶 ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ∧ ( 𝐶 + 𝑅 ) ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) → ( 𝐶 < ( 𝐶 + 𝑅 ) ↔ ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ 𝐶 ) < ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ ( 𝐶 + 𝑅 ) ) ) ) | |
| 132 | 131 | biimpd | ⊢ ( ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) Isom < , < ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) , ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ∧ ( 𝐶 ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ∧ ( 𝐶 + 𝑅 ) ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) → ( 𝐶 < ( 𝐶 + 𝑅 ) → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ 𝐶 ) < ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ ( 𝐶 + 𝑅 ) ) ) ) |
| 133 | 132 | exp32 | ⊢ ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) Isom < , < ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) , ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) → ( 𝐶 ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) → ( ( 𝐶 + 𝑅 ) ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) → ( 𝐶 < ( 𝐶 + 𝑅 ) → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ 𝐶 ) < ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ ( 𝐶 + 𝑅 ) ) ) ) ) ) |
| 134 | 133 | com4l | ⊢ ( 𝐶 ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) → ( ( 𝐶 + 𝑅 ) ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) → ( 𝐶 < ( 𝐶 + 𝑅 ) → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) Isom < , < ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) , ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ 𝐶 ) < ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ ( 𝐶 + 𝑅 ) ) ) ) ) ) |
| 135 | 35 72 73 134 | syl3c | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) Isom < , < ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) , ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ 𝐶 ) < ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ ( 𝐶 + 𝑅 ) ) ) ) |
| 136 | 43 82 | breq12d | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ 𝐶 ) < ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ ( 𝐶 + 𝑅 ) ) ↔ ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ ( 𝐶 + 𝑅 ) ) ) ) |
| 137 | 135 136 | sylibd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) Isom < , < ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) , ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) → ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ ( 𝐶 + 𝑅 ) ) ) ) |
| 138 | 92 | simp3d | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( 𝐹 ‘ ( 𝐶 + 𝑅 ) ) ≤ 𝑦 ) |
| 139 | simprlr | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → 𝑦 ∈ ℝ ) | |
| 140 | ltletr | ⊢ ( ( ( 𝐹 ‘ 𝐶 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐶 + 𝑅 ) ) ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ ( 𝐶 + 𝑅 ) ) ∧ ( 𝐹 ‘ ( 𝐶 + 𝑅 ) ) ≤ 𝑦 ) → ( 𝐹 ‘ 𝐶 ) < 𝑦 ) ) | |
| 141 | 24 96 139 140 | syl3anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ ( 𝐶 + 𝑅 ) ) ∧ ( 𝐹 ‘ ( 𝐶 + 𝑅 ) ) ≤ 𝑦 ) → ( 𝐹 ‘ 𝐶 ) < 𝑦 ) ) |
| 142 | 138 141 | mpan2d | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ ( 𝐶 + 𝑅 ) ) → ( 𝐹 ‘ 𝐶 ) < 𝑦 ) ) |
| 143 | 137 142 | syld | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) Isom < , < ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) , ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) → ( 𝐹 ‘ 𝐶 ) < 𝑦 ) ) |
| 144 | isorel | ⊢ ( ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) Isom < , ◡ < ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) , ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ∧ ( ( 𝐶 − 𝑅 ) ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ∧ 𝐶 ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) → ( ( 𝐶 − 𝑅 ) < 𝐶 ↔ ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ ( 𝐶 − 𝑅 ) ) ◡ < ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ 𝐶 ) ) ) | |
| 145 | 144 | biimpd | ⊢ ( ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) Isom < , ◡ < ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) , ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ∧ ( ( 𝐶 − 𝑅 ) ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ∧ 𝐶 ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) → ( ( 𝐶 − 𝑅 ) < 𝐶 → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ ( 𝐶 − 𝑅 ) ) ◡ < ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ 𝐶 ) ) ) |
| 146 | 145 | exp32 | ⊢ ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) Isom < , ◡ < ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) , ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) → ( ( 𝐶 − 𝑅 ) ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) → ( 𝐶 ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) → ( ( 𝐶 − 𝑅 ) < 𝐶 → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ ( 𝐶 − 𝑅 ) ) ◡ < ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ 𝐶 ) ) ) ) ) |
| 147 | 146 | com4l | ⊢ ( ( 𝐶 − 𝑅 ) ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) → ( 𝐶 ∈ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) → ( ( 𝐶 − 𝑅 ) < 𝐶 → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) Isom < , ◡ < ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) , ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ ( 𝐶 − 𝑅 ) ) ◡ < ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ 𝐶 ) ) ) ) ) |
| 148 | 29 35 36 147 | syl3c | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) Isom < , ◡ < ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) , ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ ( 𝐶 − 𝑅 ) ) ◡ < ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ 𝐶 ) ) ) |
| 149 | fvex | ⊢ ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ ( 𝐶 − 𝑅 ) ) ∈ V | |
| 150 | 149 79 | brcnv | ⊢ ( ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ ( 𝐶 − 𝑅 ) ) ◡ < ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ 𝐶 ) ↔ ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ 𝐶 ) < ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ ( 𝐶 − 𝑅 ) ) ) |
| 151 | 43 42 | breq12d | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ 𝐶 ) < ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ ( 𝐶 − 𝑅 ) ) ↔ ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ ( 𝐶 − 𝑅 ) ) ) ) |
| 152 | 150 151 | bitrid | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ ( 𝐶 − 𝑅 ) ) ◡ < ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ‘ 𝐶 ) ↔ ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ ( 𝐶 − 𝑅 ) ) ) ) |
| 153 | 148 152 | sylibd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) Isom < , ◡ < ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) , ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) → ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ ( 𝐶 − 𝑅 ) ) ) ) |
| 154 | 60 | simp3d | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( 𝐹 ‘ ( 𝐶 − 𝑅 ) ) ≤ 𝑦 ) |
| 155 | ltletr | ⊢ ( ( ( 𝐹 ‘ 𝐶 ) ∈ ℝ ∧ ( 𝐹 ‘ ( 𝐶 − 𝑅 ) ) ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ ( 𝐶 − 𝑅 ) ) ∧ ( 𝐹 ‘ ( 𝐶 − 𝑅 ) ) ≤ 𝑦 ) → ( 𝐹 ‘ 𝐶 ) < 𝑦 ) ) | |
| 156 | 24 65 139 155 | syl3anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ ( 𝐶 − 𝑅 ) ) ∧ ( 𝐹 ‘ ( 𝐶 − 𝑅 ) ) ≤ 𝑦 ) → ( 𝐹 ‘ 𝐶 ) < 𝑦 ) ) |
| 157 | 154 156 | mpan2d | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( 𝐹 ‘ 𝐶 ) < ( 𝐹 ‘ ( 𝐶 − 𝑅 ) ) → ( 𝐹 ‘ 𝐶 ) < 𝑦 ) ) |
| 158 | 153 157 | syld | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) Isom < , ◡ < ( ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) , ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) → ( 𝐹 ‘ 𝐶 ) < 𝑦 ) ) |
| 159 | 143 158 129 | mpjaod | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( 𝐹 ‘ 𝐶 ) < 𝑦 ) |
| 160 | 62 | rexrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → 𝑥 ∈ ℝ* ) |
| 161 | 139 | rexrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → 𝑦 ∈ ℝ* ) |
| 162 | elioo2 | ⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( ( 𝐹 ‘ 𝐶 ) ∈ ( 𝑥 (,) 𝑦 ) ↔ ( ( 𝐹 ‘ 𝐶 ) ∈ ℝ ∧ 𝑥 < ( 𝐹 ‘ 𝐶 ) ∧ ( 𝐹 ‘ 𝐶 ) < 𝑦 ) ) ) | |
| 163 | 160 161 162 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( 𝐹 ‘ 𝐶 ) ∈ ( 𝑥 (,) 𝑦 ) ↔ ( ( 𝐹 ‘ 𝐶 ) ∈ ℝ ∧ 𝑥 < ( 𝐹 ‘ 𝐶 ) ∧ ( 𝐹 ‘ 𝐶 ) < 𝑦 ) ) ) |
| 164 | 24 130 159 163 | mpbir3and | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( 𝐹 ‘ 𝐶 ) ∈ ( 𝑥 (,) 𝑦 ) ) |
| 165 | 56 | fveq2d | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) = ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑥 [,] 𝑦 ) ) ) |
| 166 | iccntr | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑥 [,] 𝑦 ) ) = ( 𝑥 (,) 𝑦 ) ) | |
| 167 | 166 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝑥 [,] 𝑦 ) ) = ( 𝑥 (,) 𝑦 ) ) |
| 168 | 165 167 | eqtrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) = ( 𝑥 (,) 𝑦 ) ) |
| 169 | 164 168 | eleqtrrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) ) ) → ( 𝐹 ‘ 𝐶 ) ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |
| 170 | 169 | expr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) → ( 𝐹 ‘ 𝐶 ) ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) ) |
| 171 | 170 | rexlimdvva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∃ 𝑦 ∈ ℝ ran ( 𝐹 ↾ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) = ( 𝑥 [,] 𝑦 ) → ( 𝐹 ‘ 𝐶 ) ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) ) |
| 172 | 20 171 | mpd | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝐶 ) ∈ ( ( int ‘ ( topGen ‘ ran (,) ) ) ‘ ( 𝐹 “ ( ( 𝐶 − 𝑅 ) [,] ( 𝐶 + 𝑅 ) ) ) ) ) |