This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of differentiable points is a subset of the ambient topology. (Contributed by Mario Carneiro, 18-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvbsss | ⊢ dom ( 𝑆 D 𝐹 ) ⊆ 𝑆 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dv | ⊢ D = ( 𝑠 ∈ 𝒫 ℂ , 𝑓 ∈ ( ℂ ↑pm 𝑠 ) ↦ ∪ 𝑥 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t 𝑠 ) ) ‘ dom 𝑓 ) ( { 𝑥 } × ( ( 𝑧 ∈ ( dom 𝑓 ∖ { 𝑥 } ) ↦ ( ( ( 𝑓 ‘ 𝑧 ) − ( 𝑓 ‘ 𝑥 ) ) / ( 𝑧 − 𝑥 ) ) ) limℂ 𝑥 ) ) ) | |
| 2 | 1 | reldmmpo | ⊢ Rel dom D |
| 3 | df-rel | ⊢ ( Rel dom D ↔ dom D ⊆ ( V × V ) ) | |
| 4 | 2 3 | mpbi | ⊢ dom D ⊆ ( V × V ) |
| 5 | 4 | sseli | ⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → 〈 𝑆 , 𝐹 〉 ∈ ( V × V ) ) |
| 6 | opelxp1 | ⊢ ( 〈 𝑆 , 𝐹 〉 ∈ ( V × V ) → 𝑆 ∈ V ) | |
| 7 | 5 6 | syl | ⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → 𝑆 ∈ V ) |
| 8 | opeq1 | ⊢ ( 𝑠 = 𝑆 → 〈 𝑠 , 𝐹 〉 = 〈 𝑆 , 𝐹 〉 ) | |
| 9 | 8 | eleq1d | ⊢ ( 𝑠 = 𝑆 → ( 〈 𝑠 , 𝐹 〉 ∈ dom D ↔ 〈 𝑆 , 𝐹 〉 ∈ dom D ) ) |
| 10 | eleq1 | ⊢ ( 𝑠 = 𝑆 → ( 𝑠 ∈ 𝒫 ℂ ↔ 𝑆 ∈ 𝒫 ℂ ) ) | |
| 11 | oveq2 | ⊢ ( 𝑠 = 𝑆 → ( ℂ ↑pm 𝑠 ) = ( ℂ ↑pm 𝑆 ) ) | |
| 12 | 11 | eleq2d | ⊢ ( 𝑠 = 𝑆 → ( 𝐹 ∈ ( ℂ ↑pm 𝑠 ) ↔ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ) |
| 13 | 10 12 | anbi12d | ⊢ ( 𝑠 = 𝑆 → ( ( 𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑠 ) ) ↔ ( 𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ) ) |
| 14 | 9 13 | imbi12d | ⊢ ( 𝑠 = 𝑆 → ( ( 〈 𝑠 , 𝐹 〉 ∈ dom D → ( 𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑠 ) ) ) ↔ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → ( 𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ) ) ) |
| 15 | 1 | dmmpossx | ⊢ dom D ⊆ ∪ 𝑠 ∈ 𝒫 ℂ ( { 𝑠 } × ( ℂ ↑pm 𝑠 ) ) |
| 16 | 15 | sseli | ⊢ ( 〈 𝑠 , 𝐹 〉 ∈ dom D → 〈 𝑠 , 𝐹 〉 ∈ ∪ 𝑠 ∈ 𝒫 ℂ ( { 𝑠 } × ( ℂ ↑pm 𝑠 ) ) ) |
| 17 | opeliunxp | ⊢ ( 〈 𝑠 , 𝐹 〉 ∈ ∪ 𝑠 ∈ 𝒫 ℂ ( { 𝑠 } × ( ℂ ↑pm 𝑠 ) ) ↔ ( 𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑠 ) ) ) | |
| 18 | 16 17 | sylib | ⊢ ( 〈 𝑠 , 𝐹 〉 ∈ dom D → ( 𝑠 ∈ 𝒫 ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑠 ) ) ) |
| 19 | 14 18 | vtoclg | ⊢ ( 𝑆 ∈ V → ( 〈 𝑆 , 𝐹 〉 ∈ dom D → ( 𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ) ) |
| 20 | 7 19 | mpcom | ⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → ( 𝑆 ∈ 𝒫 ℂ ∧ 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) ) |
| 21 | 20 | simpld | ⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → 𝑆 ∈ 𝒫 ℂ ) |
| 22 | 21 | elpwid | ⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → 𝑆 ⊆ ℂ ) |
| 23 | 20 | simprd | ⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ) |
| 24 | cnex | ⊢ ℂ ∈ V | |
| 25 | elpm2g | ⊢ ( ( ℂ ∈ V ∧ 𝑆 ∈ 𝒫 ℂ ) → ( 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ 𝑆 ) ) ) | |
| 26 | 24 21 25 | sylancr | ⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → ( 𝐹 ∈ ( ℂ ↑pm 𝑆 ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ 𝑆 ) ) ) |
| 27 | 23 26 | mpbid | ⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ 𝑆 ) ) |
| 28 | 27 | simpld | ⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → 𝐹 : dom 𝐹 ⟶ ℂ ) |
| 29 | 27 | simprd | ⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → dom 𝐹 ⊆ 𝑆 ) |
| 30 | 22 28 29 | dvbss | ⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → dom ( 𝑆 D 𝐹 ) ⊆ dom 𝐹 ) |
| 31 | 30 29 | sstrd | ⊢ ( 〈 𝑆 , 𝐹 〉 ∈ dom D → dom ( 𝑆 D 𝐹 ) ⊆ 𝑆 ) |
| 32 | df-ov | ⊢ ( 𝑆 D 𝐹 ) = ( D ‘ 〈 𝑆 , 𝐹 〉 ) | |
| 33 | ndmfv | ⊢ ( ¬ 〈 𝑆 , 𝐹 〉 ∈ dom D → ( D ‘ 〈 𝑆 , 𝐹 〉 ) = ∅ ) | |
| 34 | 32 33 | eqtrid | ⊢ ( ¬ 〈 𝑆 , 𝐹 〉 ∈ dom D → ( 𝑆 D 𝐹 ) = ∅ ) |
| 35 | 34 | dmeqd | ⊢ ( ¬ 〈 𝑆 , 𝐹 〉 ∈ dom D → dom ( 𝑆 D 𝐹 ) = dom ∅ ) |
| 36 | dm0 | ⊢ dom ∅ = ∅ | |
| 37 | 35 36 | eqtrdi | ⊢ ( ¬ 〈 𝑆 , 𝐹 〉 ∈ dom D → dom ( 𝑆 D 𝐹 ) = ∅ ) |
| 38 | 0ss | ⊢ ∅ ⊆ 𝑆 | |
| 39 | 37 38 | eqsstrdi | ⊢ ( ¬ 〈 𝑆 , 𝐹 〉 ∈ dom D → dom ( 𝑆 D 𝐹 ) ⊆ 𝑆 ) |
| 40 | 31 39 | pm2.61i | ⊢ dom ( 𝑆 D 𝐹 ) ⊆ 𝑆 |