This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Take the sum of group sums over two families of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 14-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eldprdi.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| eldprdi.w | ⊢ 𝑊 = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } | ||
| eldprdi.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | ||
| eldprdi.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | ||
| eldprdi.3 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑊 ) | ||
| dprdfadd.4 | ⊢ ( 𝜑 → 𝐻 ∈ 𝑊 ) | ||
| dprdfadd.b | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | dprdfadd | ⊢ ( 𝜑 → ( ( 𝐹 ∘f + 𝐻 ) ∈ 𝑊 ∧ ( 𝐺 Σg ( 𝐹 ∘f + 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) + ( 𝐺 Σg 𝐻 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldprdi.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 2 | eldprdi.w | ⊢ 𝑊 = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } | |
| 3 | eldprdi.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | |
| 4 | eldprdi.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | |
| 5 | eldprdi.3 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑊 ) | |
| 6 | dprdfadd.4 | ⊢ ( 𝜑 → 𝐻 ∈ 𝑊 ) | |
| 7 | dprdfadd.b | ⊢ + = ( +g ‘ 𝐺 ) | |
| 8 | 3 4 | dprddomcld | ⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 9 | 2 3 4 5 | dprdfcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ) |
| 10 | 2 3 4 6 | dprdfcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐻 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ) |
| 11 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 12 | 2 3 4 5 11 | dprdff | ⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) |
| 13 | 12 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 14 | 2 3 4 6 11 | dprdff | ⊢ ( 𝜑 → 𝐻 : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) |
| 15 | 14 | feqmptd | ⊢ ( 𝜑 → 𝐻 = ( 𝑥 ∈ 𝐼 ↦ ( 𝐻 ‘ 𝑥 ) ) ) |
| 16 | 8 9 10 13 15 | offval2 | ⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐻 ) = ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐻 ‘ 𝑥 ) ) ) ) |
| 17 | 3 4 | dprdf2 | ⊢ ( 𝜑 → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 18 | 17 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑆 ‘ 𝑥 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 19 | 7 | subgcl | ⊢ ( ( ( 𝑆 ‘ 𝑥 ) ∈ ( SubGrp ‘ 𝐺 ) ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ∧ ( 𝐻 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ) → ( ( 𝐹 ‘ 𝑥 ) + ( 𝐻 ‘ 𝑥 ) ) ∈ ( 𝑆 ‘ 𝑥 ) ) |
| 20 | 18 9 10 19 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑥 ) + ( 𝐻 ‘ 𝑥 ) ) ∈ ( 𝑆 ‘ 𝑥 ) ) |
| 21 | 2 3 4 5 | dprdffsupp | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
| 22 | 2 3 4 6 | dprdffsupp | ⊢ ( 𝜑 → 𝐻 finSupp 0 ) |
| 23 | 21 22 | fsuppunfi | ⊢ ( 𝜑 → ( ( 𝐹 supp 0 ) ∪ ( 𝐻 supp 0 ) ) ∈ Fin ) |
| 24 | ssun1 | ⊢ ( 𝐹 supp 0 ) ⊆ ( ( 𝐹 supp 0 ) ∪ ( 𝐻 supp 0 ) ) | |
| 25 | 24 | a1i | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( ( 𝐹 supp 0 ) ∪ ( 𝐻 supp 0 ) ) ) |
| 26 | 1 | fvexi | ⊢ 0 ∈ V |
| 27 | 26 | a1i | ⊢ ( 𝜑 → 0 ∈ V ) |
| 28 | 12 25 8 27 | suppssr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐻 supp 0 ) ) ) ) → ( 𝐹 ‘ 𝑥 ) = 0 ) |
| 29 | ssun2 | ⊢ ( 𝐻 supp 0 ) ⊆ ( ( 𝐹 supp 0 ) ∪ ( 𝐻 supp 0 ) ) | |
| 30 | 29 | a1i | ⊢ ( 𝜑 → ( 𝐻 supp 0 ) ⊆ ( ( 𝐹 supp 0 ) ∪ ( 𝐻 supp 0 ) ) ) |
| 31 | 14 30 8 27 | suppssr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐻 supp 0 ) ) ) ) → ( 𝐻 ‘ 𝑥 ) = 0 ) |
| 32 | 28 31 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐻 supp 0 ) ) ) ) → ( ( 𝐹 ‘ 𝑥 ) + ( 𝐻 ‘ 𝑥 ) ) = ( 0 + 0 ) ) |
| 33 | dprdgrp | ⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 ∈ Grp ) | |
| 34 | 3 33 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 35 | 11 1 | grpidcl | ⊢ ( 𝐺 ∈ Grp → 0 ∈ ( Base ‘ 𝐺 ) ) |
| 36 | 11 7 1 | grplid | ⊢ ( ( 𝐺 ∈ Grp ∧ 0 ∈ ( Base ‘ 𝐺 ) ) → ( 0 + 0 ) = 0 ) |
| 37 | 34 35 36 | syl2anc2 | ⊢ ( 𝜑 → ( 0 + 0 ) = 0 ) |
| 38 | 37 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐻 supp 0 ) ) ) ) → ( 0 + 0 ) = 0 ) |
| 39 | 32 38 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ ( ( 𝐹 supp 0 ) ∪ ( 𝐻 supp 0 ) ) ) ) → ( ( 𝐹 ‘ 𝑥 ) + ( 𝐻 ‘ 𝑥 ) ) = 0 ) |
| 40 | 39 8 | suppss2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐻 ‘ 𝑥 ) ) ) supp 0 ) ⊆ ( ( 𝐹 supp 0 ) ∪ ( 𝐻 supp 0 ) ) ) |
| 41 | 23 40 | ssfid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐻 ‘ 𝑥 ) ) ) supp 0 ) ∈ Fin ) |
| 42 | funmpt | ⊢ Fun ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐻 ‘ 𝑥 ) ) ) | |
| 43 | 42 | a1i | ⊢ ( 𝜑 → Fun ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐻 ‘ 𝑥 ) ) ) ) |
| 44 | 8 | mptexd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐻 ‘ 𝑥 ) ) ) ∈ V ) |
| 45 | funisfsupp | ⊢ ( ( Fun ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐻 ‘ 𝑥 ) ) ) ∧ ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐻 ‘ 𝑥 ) ) ) ∈ V ∧ 0 ∈ V ) → ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐻 ‘ 𝑥 ) ) ) finSupp 0 ↔ ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐻 ‘ 𝑥 ) ) ) supp 0 ) ∈ Fin ) ) | |
| 46 | 43 44 27 45 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐻 ‘ 𝑥 ) ) ) finSupp 0 ↔ ( ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐻 ‘ 𝑥 ) ) ) supp 0 ) ∈ Fin ) ) |
| 47 | 41 46 | mpbird | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐻 ‘ 𝑥 ) ) ) finSupp 0 ) |
| 48 | 2 3 4 20 47 | dprdwd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑥 ) + ( 𝐻 ‘ 𝑥 ) ) ) ∈ 𝑊 ) |
| 49 | 16 48 | eqeltrd | ⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐻 ) ∈ 𝑊 ) |
| 50 | eqid | ⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) | |
| 51 | 34 | grpmndd | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 52 | eqid | ⊢ ( ( 𝐹 ∪ 𝐻 ) supp 0 ) = ( ( 𝐹 ∪ 𝐻 ) supp 0 ) | |
| 53 | 2 3 4 5 50 | dprdfcntz | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran 𝐹 ) ) |
| 54 | 2 3 4 6 50 | dprdfcntz | ⊢ ( 𝜑 → ran 𝐻 ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran 𝐻 ) ) |
| 55 | 2 3 4 49 50 | dprdfcntz | ⊢ ( 𝜑 → ran ( 𝐹 ∘f + 𝐻 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran ( 𝐹 ∘f + 𝐻 ) ) ) |
| 56 | 51 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → 𝐺 ∈ Mnd ) |
| 57 | vex | ⊢ 𝑥 ∈ V | |
| 58 | 57 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → 𝑥 ∈ V ) |
| 59 | eldifi | ⊢ ( 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) → 𝑘 ∈ 𝐼 ) | |
| 60 | 59 | adantl | ⊢ ( ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) → 𝑘 ∈ 𝐼 ) |
| 61 | ffvelcdm | ⊢ ( ( 𝐹 : 𝐼 ⟶ ( Base ‘ 𝐺 ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( Base ‘ 𝐺 ) ) | |
| 62 | 12 60 61 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( Base ‘ 𝐺 ) ) |
| 63 | 62 | snssd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → { ( 𝐹 ‘ 𝑘 ) } ⊆ ( Base ‘ 𝐺 ) ) |
| 64 | 11 50 | cntzsubm | ⊢ ( ( 𝐺 ∈ Mnd ∧ { ( 𝐹 ‘ 𝑘 ) } ⊆ ( Base ‘ 𝐺 ) ) → ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐹 ‘ 𝑘 ) } ) ∈ ( SubMnd ‘ 𝐺 ) ) |
| 65 | 56 63 64 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐹 ‘ 𝑘 ) } ) ∈ ( SubMnd ‘ 𝐺 ) ) |
| 66 | 14 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → 𝐻 : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) |
| 67 | 66 | ffnd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → 𝐻 Fn 𝐼 ) |
| 68 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → 𝑥 ⊆ 𝐼 ) | |
| 69 | fnssres | ⊢ ( ( 𝐻 Fn 𝐼 ∧ 𝑥 ⊆ 𝐼 ) → ( 𝐻 ↾ 𝑥 ) Fn 𝑥 ) | |
| 70 | 67 68 69 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → ( 𝐻 ↾ 𝑥 ) Fn 𝑥 ) |
| 71 | fvres | ⊢ ( 𝑦 ∈ 𝑥 → ( ( 𝐻 ↾ 𝑥 ) ‘ 𝑦 ) = ( 𝐻 ‘ 𝑦 ) ) | |
| 72 | 71 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝐻 ↾ 𝑥 ) ‘ 𝑦 ) = ( 𝐻 ‘ 𝑦 ) ) |
| 73 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝐺 dom DProd 𝑆 ) |
| 74 | 4 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → dom 𝑆 = 𝐼 ) |
| 75 | 73 74 | dprdf2 | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 76 | 60 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑘 ∈ 𝐼 ) |
| 77 | 75 76 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑆 ‘ 𝑘 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 78 | 11 | subgss | ⊢ ( ( 𝑆 ‘ 𝑘 ) ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑆 ‘ 𝑘 ) ⊆ ( Base ‘ 𝐺 ) ) |
| 79 | 77 78 | syl | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑆 ‘ 𝑘 ) ⊆ ( Base ‘ 𝐺 ) ) |
| 80 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝐹 ∈ 𝑊 ) |
| 81 | 2 73 74 80 | dprdfcl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑘 ) ) |
| 82 | 76 81 | mpdan | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝑆 ‘ 𝑘 ) ) |
| 83 | 82 | snssd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → { ( 𝐹 ‘ 𝑘 ) } ⊆ ( 𝑆 ‘ 𝑘 ) ) |
| 84 | 11 50 | cntz2ss | ⊢ ( ( ( 𝑆 ‘ 𝑘 ) ⊆ ( Base ‘ 𝐺 ) ∧ { ( 𝐹 ‘ 𝑘 ) } ⊆ ( 𝑆 ‘ 𝑘 ) ) → ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑘 ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐹 ‘ 𝑘 ) } ) ) |
| 85 | 79 83 84 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑘 ) ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐹 ‘ 𝑘 ) } ) ) |
| 86 | 68 | sselda | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝐼 ) |
| 87 | simpr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ 𝑥 ) | |
| 88 | simplrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) | |
| 89 | 88 | eldifbd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ¬ 𝑘 ∈ 𝑥 ) |
| 90 | nelne2 | ⊢ ( ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑘 ∈ 𝑥 ) → 𝑦 ≠ 𝑘 ) | |
| 91 | 87 89 90 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ≠ 𝑘 ) |
| 92 | 73 74 86 76 91 50 | dprdcntz | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝑆 ‘ 𝑦 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑘 ) ) ) |
| 93 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → 𝐻 ∈ 𝑊 ) |
| 94 | 2 73 74 93 | dprdfcl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) ∧ 𝑦 ∈ 𝐼 ) → ( 𝐻 ‘ 𝑦 ) ∈ ( 𝑆 ‘ 𝑦 ) ) |
| 95 | 86 94 | mpdan | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐻 ‘ 𝑦 ) ∈ ( 𝑆 ‘ 𝑦 ) ) |
| 96 | 92 95 | sseldd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐻 ‘ 𝑦 ) ∈ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑘 ) ) ) |
| 97 | 85 96 | sseldd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( 𝐻 ‘ 𝑦 ) ∈ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐹 ‘ 𝑘 ) } ) ) |
| 98 | 72 97 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝐻 ↾ 𝑥 ) ‘ 𝑦 ) ∈ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐹 ‘ 𝑘 ) } ) ) |
| 99 | 98 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → ∀ 𝑦 ∈ 𝑥 ( ( 𝐻 ↾ 𝑥 ) ‘ 𝑦 ) ∈ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐹 ‘ 𝑘 ) } ) ) |
| 100 | ffnfv | ⊢ ( ( 𝐻 ↾ 𝑥 ) : 𝑥 ⟶ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐹 ‘ 𝑘 ) } ) ↔ ( ( 𝐻 ↾ 𝑥 ) Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( ( 𝐻 ↾ 𝑥 ) ‘ 𝑦 ) ∈ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐹 ‘ 𝑘 ) } ) ) ) | |
| 101 | 70 99 100 | sylanbrc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → ( 𝐻 ↾ 𝑥 ) : 𝑥 ⟶ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐹 ‘ 𝑘 ) } ) ) |
| 102 | resss | ⊢ ( 𝐻 ↾ 𝑥 ) ⊆ 𝐻 | |
| 103 | 102 | rnssi | ⊢ ran ( 𝐻 ↾ 𝑥 ) ⊆ ran 𝐻 |
| 104 | 50 | cntzidss | ⊢ ( ( ran 𝐻 ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran 𝐻 ) ∧ ran ( 𝐻 ↾ 𝑥 ) ⊆ ran 𝐻 ) → ran ( 𝐻 ↾ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran ( 𝐻 ↾ 𝑥 ) ) ) |
| 105 | 54 103 104 | sylancl | ⊢ ( 𝜑 → ran ( 𝐻 ↾ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran ( 𝐻 ↾ 𝑥 ) ) ) |
| 106 | 105 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → ran ( 𝐻 ↾ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ran ( 𝐻 ↾ 𝑥 ) ) ) |
| 107 | 22 27 | fsuppres | ⊢ ( 𝜑 → ( 𝐻 ↾ 𝑥 ) finSupp 0 ) |
| 108 | 107 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → ( 𝐻 ↾ 𝑥 ) finSupp 0 ) |
| 109 | 1 50 56 58 65 101 106 108 | gsumzsubmcl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) ∈ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐹 ‘ 𝑘 ) } ) ) |
| 110 | 109 | snssd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ⊆ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐹 ‘ 𝑘 ) } ) ) |
| 111 | 66 68 | fssresd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → ( 𝐻 ↾ 𝑥 ) : 𝑥 ⟶ ( Base ‘ 𝐺 ) ) |
| 112 | 11 1 50 56 58 111 106 108 | gsumzcl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) ∈ ( Base ‘ 𝐺 ) ) |
| 113 | 112 | snssd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ⊆ ( Base ‘ 𝐺 ) ) |
| 114 | 11 50 | cntzrec | ⊢ ( ( { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ⊆ ( Base ‘ 𝐺 ) ∧ { ( 𝐹 ‘ 𝑘 ) } ⊆ ( Base ‘ 𝐺 ) ) → ( { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ⊆ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐹 ‘ 𝑘 ) } ) ↔ { ( 𝐹 ‘ 𝑘 ) } ⊆ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ) ) ) |
| 115 | 113 63 114 | syl2anc | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → ( { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ⊆ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐹 ‘ 𝑘 ) } ) ↔ { ( 𝐹 ‘ 𝑘 ) } ⊆ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ) ) ) |
| 116 | 110 115 | mpbid | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → { ( 𝐹 ‘ 𝑘 ) } ⊆ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ) ) |
| 117 | fvex | ⊢ ( 𝐹 ‘ 𝑘 ) ∈ V | |
| 118 | 117 | snss | ⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ) ↔ { ( 𝐹 ‘ 𝑘 ) } ⊆ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ) ) |
| 119 | 116 118 | sylibr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐼 ∧ 𝑘 ∈ ( 𝐼 ∖ 𝑥 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ( ( Cntz ‘ 𝐺 ) ‘ { ( 𝐺 Σg ( 𝐻 ↾ 𝑥 ) ) } ) ) |
| 120 | 11 1 7 50 51 8 21 22 52 12 14 53 54 55 119 | gsumzaddlem | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ∘f + 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) + ( 𝐺 Σg 𝐻 ) ) ) |
| 121 | 49 120 | jca | ⊢ ( 𝜑 → ( ( 𝐹 ∘f + 𝐻 ) ∈ 𝑊 ∧ ( 𝐺 Σg ( 𝐹 ∘f + 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) + ( 𝐺 Σg 𝐻 ) ) ) ) |