This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reciprocity relationship for centralizers. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzrec.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| cntzrec.z | ⊢ 𝑍 = ( Cntz ‘ 𝑀 ) | ||
| Assertion | cntzrec | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) → ( 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ↔ 𝑇 ⊆ ( 𝑍 ‘ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzrec.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | cntzrec.z | ⊢ 𝑍 = ( Cntz ‘ 𝑀 ) | |
| 3 | ralcom | ⊢ ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑇 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ↔ ∀ 𝑦 ∈ 𝑇 ∀ 𝑥 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) | |
| 4 | eqcom | ⊢ ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ↔ ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) | |
| 5 | 4 | 2ralbii | ⊢ ( ∀ 𝑦 ∈ 𝑇 ∀ 𝑥 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ↔ ∀ 𝑦 ∈ 𝑇 ∀ 𝑥 ∈ 𝑆 ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) |
| 6 | 3 5 | bitri | ⊢ ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑇 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ↔ ∀ 𝑦 ∈ 𝑇 ∀ 𝑥 ∈ 𝑆 ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) |
| 7 | 6 | a1i | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑇 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ↔ ∀ 𝑦 ∈ 𝑇 ∀ 𝑥 ∈ 𝑆 ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) ) |
| 8 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 9 | 1 8 2 | sscntz | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) → ( 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑇 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) ) |
| 10 | 1 8 2 | sscntz | ⊢ ( ( 𝑇 ⊆ 𝐵 ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑇 ⊆ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑇 ∀ 𝑥 ∈ 𝑆 ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) ) |
| 11 | 10 | ancoms | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) → ( 𝑇 ⊆ ( 𝑍 ‘ 𝑆 ) ↔ ∀ 𝑦 ∈ 𝑇 ∀ 𝑥 ∈ 𝑆 ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) ) |
| 12 | 7 9 11 | 3bitr4d | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) → ( 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ↔ 𝑇 ⊆ ( 𝑍 ‘ 𝑆 ) ) ) |