This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Centralizers in a monoid are submonoids. (Contributed by Stefan O'Rear, 6-Sep-2015) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzrec.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| cntzrec.z | ⊢ 𝑍 = ( Cntz ‘ 𝑀 ) | ||
| Assertion | cntzsubm | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) ∈ ( SubMnd ‘ 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzrec.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | cntzrec.z | ⊢ 𝑍 = ( Cntz ‘ 𝑀 ) | |
| 3 | 1 2 | cntzssv | ⊢ ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 |
| 4 | 3 | a1i | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 ) |
| 5 | eqid | ⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) | |
| 6 | 1 5 | mndidcl | ⊢ ( 𝑀 ∈ Mnd → ( 0g ‘ 𝑀 ) ∈ 𝐵 ) |
| 7 | 6 | adantr | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) → ( 0g ‘ 𝑀 ) ∈ 𝐵 ) |
| 8 | simpll | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑀 ∈ Mnd ) | |
| 9 | simpr | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) → 𝑆 ⊆ 𝐵 ) | |
| 10 | 9 | sselda | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝐵 ) |
| 11 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 12 | 1 11 5 | mndlid | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ) → ( ( 0g ‘ 𝑀 ) ( +g ‘ 𝑀 ) 𝑥 ) = 𝑥 ) |
| 13 | 8 10 12 | syl2anc | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 0g ‘ 𝑀 ) ( +g ‘ 𝑀 ) 𝑥 ) = 𝑥 ) |
| 14 | 1 11 5 | mndrid | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝑀 ) ( 0g ‘ 𝑀 ) ) = 𝑥 ) |
| 15 | 8 10 14 | syl2anc | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ( +g ‘ 𝑀 ) ( 0g ‘ 𝑀 ) ) = 𝑥 ) |
| 16 | 13 15 | eqtr4d | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 0g ‘ 𝑀 ) ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 0g ‘ 𝑀 ) ) ) |
| 17 | 16 | ralrimiva | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) → ∀ 𝑥 ∈ 𝑆 ( ( 0g ‘ 𝑀 ) ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 0g ‘ 𝑀 ) ) ) |
| 18 | 1 11 2 | elcntz | ⊢ ( 𝑆 ⊆ 𝐵 → ( ( 0g ‘ 𝑀 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ( ( 0g ‘ 𝑀 ) ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 0g ‘ 𝑀 ) ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 0g ‘ 𝑀 ) ) ) ) ) |
| 19 | 18 | adantl | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) → ( ( 0g ‘ 𝑀 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ( ( 0g ‘ 𝑀 ) ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 0g ‘ 𝑀 ) ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 0g ‘ 𝑀 ) ) ) ) ) |
| 20 | 7 17 19 | mpbir2and | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) → ( 0g ‘ 𝑀 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 21 | simpll | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) → 𝑀 ∈ Mnd ) | |
| 22 | simprl | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) → 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ) | |
| 23 | 3 22 | sselid | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) → 𝑦 ∈ 𝐵 ) |
| 24 | simprr | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) → 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) | |
| 25 | 3 24 | sselid | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) → 𝑧 ∈ 𝐵 ) |
| 26 | 1 11 | mndcl | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ∈ 𝐵 ) |
| 27 | 21 23 25 26 | syl3anc | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) → ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ∈ 𝐵 ) |
| 28 | 21 | adantr | ⊢ ( ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑀 ∈ Mnd ) |
| 29 | 23 | adantr | ⊢ ( ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑦 ∈ 𝐵 ) |
| 30 | 25 | adantr | ⊢ ( ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑧 ∈ 𝐵 ) |
| 31 | 10 | adantlr | ⊢ ( ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝐵 ) |
| 32 | 1 11 | mndass | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ) ) → ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ) ) |
| 33 | 28 29 30 31 32 | syl13anc | ⊢ ( ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ) ) |
| 34 | 11 2 | cntzi | ⊢ ( ( 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑧 ) ) |
| 35 | 24 34 | sylan | ⊢ ( ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑧 ) ) |
| 36 | 35 | oveq2d | ⊢ ( ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ) = ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
| 37 | 1 11 | mndass | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
| 38 | 28 29 31 30 37 | syl13anc | ⊢ ( ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑥 ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
| 39 | 11 2 | cntzi | ⊢ ( ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) |
| 40 | 22 39 | sylan | ⊢ ( ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) |
| 41 | 40 | oveq1d | ⊢ ( ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) ) |
| 42 | 36 38 41 | 3eqtr2d | ⊢ ( ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑦 ( +g ‘ 𝑀 ) ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ) = ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) ) |
| 43 | 1 11 | mndass | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
| 44 | 28 31 29 30 43 | syl13anc | ⊢ ( ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ( +g ‘ 𝑀 ) 𝑧 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
| 45 | 33 42 44 | 3eqtrd | ⊢ ( ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
| 46 | 45 | ralrimiva | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) → ∀ 𝑥 ∈ 𝑆 ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) |
| 47 | 1 11 2 | elcntz | ⊢ ( 𝑆 ⊆ 𝐵 → ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) ) ) |
| 48 | 47 | ad2antlr | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) → ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ∈ ( 𝑍 ‘ 𝑆 ) ↔ ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ∈ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ( +g ‘ 𝑀 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝑀 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ) ) ) ) |
| 49 | 27 46 48 | mpbir2and | ⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) ∧ ( 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ) ) → ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 50 | 49 | ralrimivva | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) → ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∀ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ∈ ( 𝑍 ‘ 𝑆 ) ) |
| 51 | 1 5 11 | issubm | ⊢ ( 𝑀 ∈ Mnd → ( ( 𝑍 ‘ 𝑆 ) ∈ ( SubMnd ‘ 𝑀 ) ↔ ( ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 ∧ ( 0g ‘ 𝑀 ) ∈ ( 𝑍 ‘ 𝑆 ) ∧ ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∀ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ∈ ( 𝑍 ‘ 𝑆 ) ) ) ) |
| 52 | 51 | adantr | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) → ( ( 𝑍 ‘ 𝑆 ) ∈ ( SubMnd ‘ 𝑀 ) ↔ ( ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 ∧ ( 0g ‘ 𝑀 ) ∈ ( 𝑍 ‘ 𝑆 ) ∧ ∀ 𝑦 ∈ ( 𝑍 ‘ 𝑆 ) ∀ 𝑧 ∈ ( 𝑍 ‘ 𝑆 ) ( 𝑦 ( +g ‘ 𝑀 ) 𝑧 ) ∈ ( 𝑍 ‘ 𝑆 ) ) ) ) |
| 53 | 4 20 50 52 | mpbir3and | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ) → ( 𝑍 ‘ 𝑆 ) ∈ ( SubMnd ‘ 𝑀 ) ) |