This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure for the internal direct product. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dprdgrp | ⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 ∈ Grp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldmdprd | ⊢ Rel dom DProd | |
| 2 | 1 | brrelex2i | ⊢ ( 𝐺 dom DProd 𝑆 → 𝑆 ∈ V ) |
| 3 | 2 | dmexd | ⊢ ( 𝐺 dom DProd 𝑆 → dom 𝑆 ∈ V ) |
| 4 | eqid | ⊢ dom 𝑆 = dom 𝑆 | |
| 5 | eqid | ⊢ ( Cntz ‘ 𝐺 ) = ( Cntz ‘ 𝐺 ) | |
| 6 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 7 | eqid | ⊢ ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | |
| 8 | 5 6 7 | dmdprd | ⊢ ( ( dom 𝑆 ∈ V ∧ dom 𝑆 = dom 𝑆 ) → ( 𝐺 dom DProd 𝑆 ↔ ( 𝐺 ∈ Grp ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ) ) |
| 9 | 3 4 8 | sylancl | ⊢ ( 𝐺 dom DProd 𝑆 → ( 𝐺 dom DProd 𝑆 ↔ ( 𝐺 ∈ Grp ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ) ) |
| 10 | 9 | ibi | ⊢ ( 𝐺 dom DProd 𝑆 → ( 𝐺 ∈ Grp ∧ 𝑆 : dom 𝑆 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ dom 𝑆 ( ∀ 𝑦 ∈ ( dom 𝑆 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( ( Cntz ‘ 𝐺 ) ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( dom 𝑆 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ) |
| 11 | 10 | simp1d | ⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 ∈ Grp ) |