This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union of the support of two finitely supported functions is finite. (Contributed by AV, 1-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsuppun.f | ⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) | |
| fsuppun.g | ⊢ ( 𝜑 → 𝐺 finSupp 𝑍 ) | ||
| Assertion | fsuppunfi | ⊢ ( 𝜑 → ( ( 𝐹 supp 𝑍 ) ∪ ( 𝐺 supp 𝑍 ) ) ∈ Fin ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppun.f | ⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) | |
| 2 | fsuppun.g | ⊢ ( 𝜑 → 𝐺 finSupp 𝑍 ) | |
| 3 | fsuppimp | ⊢ ( 𝐹 finSupp 𝑍 → ( Fun 𝐹 ∧ ( 𝐹 supp 𝑍 ) ∈ Fin ) ) | |
| 4 | fsuppimp | ⊢ ( 𝐺 finSupp 𝑍 → ( Fun 𝐺 ∧ ( 𝐺 supp 𝑍 ) ∈ Fin ) ) | |
| 5 | unfi | ⊢ ( ( ( 𝐹 supp 𝑍 ) ∈ Fin ∧ ( 𝐺 supp 𝑍 ) ∈ Fin ) → ( ( 𝐹 supp 𝑍 ) ∪ ( 𝐺 supp 𝑍 ) ) ∈ Fin ) | |
| 6 | 5 | expcom | ⊢ ( ( 𝐺 supp 𝑍 ) ∈ Fin → ( ( 𝐹 supp 𝑍 ) ∈ Fin → ( ( 𝐹 supp 𝑍 ) ∪ ( 𝐺 supp 𝑍 ) ) ∈ Fin ) ) |
| 7 | 6 | adantl | ⊢ ( ( Fun 𝐺 ∧ ( 𝐺 supp 𝑍 ) ∈ Fin ) → ( ( 𝐹 supp 𝑍 ) ∈ Fin → ( ( 𝐹 supp 𝑍 ) ∪ ( 𝐺 supp 𝑍 ) ) ∈ Fin ) ) |
| 8 | 2 4 7 | 3syl | ⊢ ( 𝜑 → ( ( 𝐹 supp 𝑍 ) ∈ Fin → ( ( 𝐹 supp 𝑍 ) ∪ ( 𝐺 supp 𝑍 ) ) ∈ Fin ) ) |
| 9 | 8 | com12 | ⊢ ( ( 𝐹 supp 𝑍 ) ∈ Fin → ( 𝜑 → ( ( 𝐹 supp 𝑍 ) ∪ ( 𝐺 supp 𝑍 ) ) ∈ Fin ) ) |
| 10 | 3 9 | simpl2im | ⊢ ( 𝐹 finSupp 𝑍 → ( 𝜑 → ( ( 𝐹 supp 𝑍 ) ∪ ( 𝐺 supp 𝑍 ) ) ∈ Fin ) ) |
| 11 | 1 10 | mpcom | ⊢ ( 𝜑 → ( ( 𝐹 supp 𝑍 ) ∪ ( 𝐺 supp 𝑍 ) ) ∈ Fin ) |