This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A mapping being a finitely supported function in the family S . (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 11-Jul-2019) (Proof shortened by OpenAI, 30-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprdff.w | ⊢ 𝑊 = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } | |
| dprdff.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | ||
| dprdff.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | ||
| dprdwd.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐴 ∈ ( 𝑆 ‘ 𝑥 ) ) | ||
| dprdwd.4 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 𝐴 ) finSupp 0 ) | ||
| Assertion | dprdwd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 𝐴 ) ∈ 𝑊 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdff.w | ⊢ 𝑊 = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } | |
| 2 | dprdff.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | |
| 3 | dprdff.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | |
| 4 | dprdwd.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐴 ∈ ( 𝑆 ‘ 𝑥 ) ) | |
| 5 | dprdwd.4 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 𝐴 ) finSupp 0 ) | |
| 6 | breq1 | ⊢ ( ℎ = ( 𝑥 ∈ 𝐼 ↦ 𝐴 ) → ( ℎ finSupp 0 ↔ ( 𝑥 ∈ 𝐼 ↦ 𝐴 ) finSupp 0 ) ) | |
| 7 | 4 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 𝐴 ∈ ( 𝑆 ‘ 𝑥 ) ) |
| 8 | 2 3 | dprddomcld | ⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 9 | mptelixpg | ⊢ ( 𝐼 ∈ V → ( ( 𝑥 ∈ 𝐼 ↦ 𝐴 ) ∈ X 𝑥 ∈ 𝐼 ( 𝑆 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐼 𝐴 ∈ ( 𝑆 ‘ 𝑥 ) ) ) | |
| 10 | 8 9 | syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐼 ↦ 𝐴 ) ∈ X 𝑥 ∈ 𝐼 ( 𝑆 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐼 𝐴 ∈ ( 𝑆 ‘ 𝑥 ) ) ) |
| 11 | 7 10 | mpbird | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 𝐴 ) ∈ X 𝑥 ∈ 𝐼 ( 𝑆 ‘ 𝑥 ) ) |
| 12 | fveq2 | ⊢ ( 𝑥 = 𝑖 → ( 𝑆 ‘ 𝑥 ) = ( 𝑆 ‘ 𝑖 ) ) | |
| 13 | 12 | cbvixpv | ⊢ X 𝑥 ∈ 𝐼 ( 𝑆 ‘ 𝑥 ) = X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) |
| 14 | 11 13 | eleqtrdi | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 𝐴 ) ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ) |
| 15 | 6 14 5 | elrabd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 𝐴 ) ∈ { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } ) |
| 16 | 15 1 | eleqtrrdi | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ 𝐴 ) ∈ 𝑊 ) |