This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of a group sum in a submonoid. (Contributed by Mario Carneiro, 24-Apr-2016) (Revised by AV, 3-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumzsubmcl.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| gsumzsubmcl.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| gsumzsubmcl.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | ||
| gsumzsubmcl.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsumzsubmcl.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) | ||
| gsumzsubmcl.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) | ||
| gsumzsubmcl.c | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) | ||
| gsumzsubmcl.w | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | ||
| Assertion | gsumzsubmcl | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumzsubmcl.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 2 | gsumzsubmcl.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 3 | gsumzsubmcl.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | |
| 4 | gsumzsubmcl.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 5 | gsumzsubmcl.s | ⊢ ( 𝜑 → 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ) | |
| 6 | gsumzsubmcl.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝑆 ) | |
| 7 | gsumzsubmcl.c | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) | |
| 8 | gsumzsubmcl.w | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | |
| 9 | eqid | ⊢ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) = ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) | |
| 10 | eqid | ⊢ ( 0g ‘ ( 𝐺 ↾s 𝑆 ) ) = ( 0g ‘ ( 𝐺 ↾s 𝑆 ) ) | |
| 11 | eqid | ⊢ ( Cntz ‘ ( 𝐺 ↾s 𝑆 ) ) = ( Cntz ‘ ( 𝐺 ↾s 𝑆 ) ) | |
| 12 | eqid | ⊢ ( 𝐺 ↾s 𝑆 ) = ( 𝐺 ↾s 𝑆 ) | |
| 13 | 12 | submmnd | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝐺 ↾s 𝑆 ) ∈ Mnd ) |
| 14 | 5 13 | syl | ⊢ ( 𝜑 → ( 𝐺 ↾s 𝑆 ) ∈ Mnd ) |
| 15 | 12 | submbas | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 𝑆 = ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 16 | 5 15 | syl | ⊢ ( 𝜑 → 𝑆 = ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 17 | 16 | feq3d | ⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ 𝑆 ↔ 𝐹 : 𝐴 ⟶ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) ) |
| 18 | 6 17 | mpbid | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 19 | 6 | frnd | ⊢ ( 𝜑 → ran 𝐹 ⊆ 𝑆 ) |
| 20 | 7 19 | ssind | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( ( 𝑍 ‘ ran 𝐹 ) ∩ 𝑆 ) ) |
| 21 | 12 2 11 | resscntz | ⊢ ( ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) ∧ ran 𝐹 ⊆ 𝑆 ) → ( ( Cntz ‘ ( 𝐺 ↾s 𝑆 ) ) ‘ ran 𝐹 ) = ( ( 𝑍 ‘ ran 𝐹 ) ∩ 𝑆 ) ) |
| 22 | 5 19 21 | syl2anc | ⊢ ( 𝜑 → ( ( Cntz ‘ ( 𝐺 ↾s 𝑆 ) ) ‘ ran 𝐹 ) = ( ( 𝑍 ‘ ran 𝐹 ) ∩ 𝑆 ) ) |
| 23 | 20 22 | sseqtrrd | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( ( Cntz ‘ ( 𝐺 ↾s 𝑆 ) ) ‘ ran 𝐹 ) ) |
| 24 | 12 1 | subm0 | ⊢ ( 𝑆 ∈ ( SubMnd ‘ 𝐺 ) → 0 = ( 0g ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 25 | 5 24 | syl | ⊢ ( 𝜑 → 0 = ( 0g ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 26 | 8 25 | breqtrd | ⊢ ( 𝜑 → 𝐹 finSupp ( 0g ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 27 | 9 10 11 14 4 18 23 26 | gsumzcl | ⊢ ( 𝜑 → ( ( 𝐺 ↾s 𝑆 ) Σg 𝐹 ) ∈ ( Base ‘ ( 𝐺 ↾s 𝑆 ) ) ) |
| 28 | 4 5 6 12 | gsumsubm | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( ( 𝐺 ↾s 𝑆 ) Σg 𝐹 ) ) |
| 29 | 27 28 16 | 3eltr4d | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ 𝑆 ) |