This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finitely supported function in S has its X -th element in S ( X ) . (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 11-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprdff.w | ⊢ 𝑊 = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } | |
| dprdff.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | ||
| dprdff.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | ||
| dprdff.3 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑊 ) | ||
| Assertion | dprdfcl | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑋 ) ∈ ( 𝑆 ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdff.w | ⊢ 𝑊 = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } | |
| 2 | dprdff.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | |
| 3 | dprdff.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | |
| 4 | dprdff.3 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑊 ) | |
| 5 | 1 2 3 | dprdw | ⊢ ( 𝜑 → ( 𝐹 ∈ 𝑊 ↔ ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ∧ 𝐹 finSupp 0 ) ) ) |
| 6 | 4 5 | mpbid | ⊢ ( 𝜑 → ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ∧ 𝐹 finSupp 0 ) ) |
| 7 | 6 | simp2d | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ) |
| 8 | fveq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) | |
| 9 | fveq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝑆 ‘ 𝑥 ) = ( 𝑆 ‘ 𝑋 ) ) | |
| 10 | 8 9 | eleq12d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑋 ) ∈ ( 𝑆 ‘ 𝑋 ) ) ) |
| 11 | 10 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ∧ 𝑋 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑋 ) ∈ ( 𝑆 ‘ 𝑋 ) ) |
| 12 | 7 11 | sylan | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑋 ) ∈ ( 𝑆 ‘ 𝑋 ) ) |