This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Centralizers reverse the subset relation. (Contributed by Mario Carneiro, 3-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cntzrec.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| cntzrec.z | ⊢ 𝑍 = ( Cntz ‘ 𝑀 ) | ||
| Assertion | cntz2ss | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆 ) → ( 𝑍 ‘ 𝑆 ) ⊆ ( 𝑍 ‘ 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzrec.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | cntzrec.z | ⊢ 𝑍 = ( Cntz ‘ 𝑀 ) | |
| 3 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 4 | 3 2 | cntzi | ⊢ ( ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) |
| 5 | 4 | ralrimiva | ⊢ ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) → ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) |
| 6 | ssralv | ⊢ ( 𝑇 ⊆ 𝑆 → ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) → ∀ 𝑦 ∈ 𝑇 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) ) | |
| 7 | 6 | adantl | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆 ) → ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) → ∀ 𝑦 ∈ 𝑇 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) ) |
| 8 | 5 7 | syl5 | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆 ) → ( 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) → ∀ 𝑦 ∈ 𝑇 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) ) |
| 9 | 8 | ralrimiv | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆 ) → ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∀ 𝑦 ∈ 𝑇 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) |
| 10 | 1 2 | cntzssv | ⊢ ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 |
| 11 | sstr | ⊢ ( ( 𝑇 ⊆ 𝑆 ∧ 𝑆 ⊆ 𝐵 ) → 𝑇 ⊆ 𝐵 ) | |
| 12 | 11 | ancoms | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆 ) → 𝑇 ⊆ 𝐵 ) |
| 13 | 1 3 2 | sscntz | ⊢ ( ( ( 𝑍 ‘ 𝑆 ) ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) → ( ( 𝑍 ‘ 𝑆 ) ⊆ ( 𝑍 ‘ 𝑇 ) ↔ ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∀ 𝑦 ∈ 𝑇 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) ) |
| 14 | 10 12 13 | sylancr | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆 ) → ( ( 𝑍 ‘ 𝑆 ) ⊆ ( 𝑍 ‘ 𝑇 ) ↔ ∀ 𝑥 ∈ ( 𝑍 ‘ 𝑆 ) ∀ 𝑦 ∈ 𝑇 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) = ( 𝑦 ( +g ‘ 𝑀 ) 𝑥 ) ) ) |
| 15 | 9 14 | mpbird | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆 ) → ( 𝑍 ‘ 𝑆 ) ⊆ ( 𝑍 ‘ 𝑇 ) ) |