This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a finitely supported function is finitely supported. (Contributed by AV, 14-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsuppres.s | ⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) | |
| fsuppres.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | ||
| Assertion | fsuppres | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝑋 ) finSupp 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsuppres.s | ⊢ ( 𝜑 → 𝐹 finSupp 𝑍 ) | |
| 2 | fsuppres.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝑉 ) | |
| 3 | fsuppimp | ⊢ ( 𝐹 finSupp 𝑍 → ( Fun 𝐹 ∧ ( 𝐹 supp 𝑍 ) ∈ Fin ) ) | |
| 4 | relprcnfsupp | ⊢ ( ¬ 𝐹 ∈ V → ¬ 𝐹 finSupp 𝑍 ) | |
| 5 | 4 | con4i | ⊢ ( 𝐹 finSupp 𝑍 → 𝐹 ∈ V ) |
| 6 | 1 5 | syl | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 7 | 6 2 | jca | ⊢ ( 𝜑 → ( 𝐹 ∈ V ∧ 𝑍 ∈ 𝑉 ) ) |
| 8 | 7 | adantr | ⊢ ( ( 𝜑 ∧ Fun 𝐹 ) → ( 𝐹 ∈ V ∧ 𝑍 ∈ 𝑉 ) ) |
| 9 | ressuppss | ⊢ ( ( 𝐹 ∈ V ∧ 𝑍 ∈ 𝑉 ) → ( ( 𝐹 ↾ 𝑋 ) supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) | |
| 10 | ssfi | ⊢ ( ( ( 𝐹 supp 𝑍 ) ∈ Fin ∧ ( ( 𝐹 ↾ 𝑋 ) supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) ) → ( ( 𝐹 ↾ 𝑋 ) supp 𝑍 ) ∈ Fin ) | |
| 11 | 10 | expcom | ⊢ ( ( ( 𝐹 ↾ 𝑋 ) supp 𝑍 ) ⊆ ( 𝐹 supp 𝑍 ) → ( ( 𝐹 supp 𝑍 ) ∈ Fin → ( ( 𝐹 ↾ 𝑋 ) supp 𝑍 ) ∈ Fin ) ) |
| 12 | 8 9 11 | 3syl | ⊢ ( ( 𝜑 ∧ Fun 𝐹 ) → ( ( 𝐹 supp 𝑍 ) ∈ Fin → ( ( 𝐹 ↾ 𝑋 ) supp 𝑍 ) ∈ Fin ) ) |
| 13 | 12 | expcom | ⊢ ( Fun 𝐹 → ( 𝜑 → ( ( 𝐹 supp 𝑍 ) ∈ Fin → ( ( 𝐹 ↾ 𝑋 ) supp 𝑍 ) ∈ Fin ) ) ) |
| 14 | 13 | com23 | ⊢ ( Fun 𝐹 → ( ( 𝐹 supp 𝑍 ) ∈ Fin → ( 𝜑 → ( ( 𝐹 ↾ 𝑋 ) supp 𝑍 ) ∈ Fin ) ) ) |
| 15 | 14 | imp | ⊢ ( ( Fun 𝐹 ∧ ( 𝐹 supp 𝑍 ) ∈ Fin ) → ( 𝜑 → ( ( 𝐹 ↾ 𝑋 ) supp 𝑍 ) ∈ Fin ) ) |
| 16 | 3 15 | syl | ⊢ ( 𝐹 finSupp 𝑍 → ( 𝜑 → ( ( 𝐹 ↾ 𝑋 ) supp 𝑍 ) ∈ Fin ) ) |
| 17 | 1 16 | mpcom | ⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝑋 ) supp 𝑍 ) ∈ Fin ) |
| 18 | funres | ⊢ ( Fun 𝐹 → Fun ( 𝐹 ↾ 𝑋 ) ) | |
| 19 | 18 | adantr | ⊢ ( ( Fun 𝐹 ∧ ( 𝐹 supp 𝑍 ) ∈ Fin ) → Fun ( 𝐹 ↾ 𝑋 ) ) |
| 20 | 1 3 19 | 3syl | ⊢ ( 𝜑 → Fun ( 𝐹 ↾ 𝑋 ) ) |
| 21 | resexg | ⊢ ( 𝐹 ∈ V → ( 𝐹 ↾ 𝑋 ) ∈ V ) | |
| 22 | 1 5 21 | 3syl | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝑋 ) ∈ V ) |
| 23 | funisfsupp | ⊢ ( ( Fun ( 𝐹 ↾ 𝑋 ) ∧ ( 𝐹 ↾ 𝑋 ) ∈ V ∧ 𝑍 ∈ 𝑉 ) → ( ( 𝐹 ↾ 𝑋 ) finSupp 𝑍 ↔ ( ( 𝐹 ↾ 𝑋 ) supp 𝑍 ) ∈ Fin ) ) | |
| 24 | 20 22 2 23 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝑋 ) finSupp 𝑍 ↔ ( ( 𝐹 ↾ 𝑋 ) supp 𝑍 ) ∈ Fin ) ) |
| 25 | 17 24 | mpbird | ⊢ ( 𝜑 → ( 𝐹 ↾ 𝑋 ) finSupp 𝑍 ) |