This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function S is a family having pairwise commuting values. (Contributed by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprdcntz.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | |
| dprdcntz.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | ||
| dprdcntz.3 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) | ||
| dprdcntz.4 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐼 ) | ||
| dprdcntz.5 | ⊢ ( 𝜑 → 𝑋 ≠ 𝑌 ) | ||
| dprdcntz.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| Assertion | dprdcntz | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝑋 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdcntz.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | |
| 2 | dprdcntz.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | |
| 3 | dprdcntz.3 | ⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) | |
| 4 | dprdcntz.4 | ⊢ ( 𝜑 → 𝑌 ∈ 𝐼 ) | |
| 5 | dprdcntz.5 | ⊢ ( 𝜑 → 𝑋 ≠ 𝑌 ) | |
| 6 | dprdcntz.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 7 | 2fveq3 | ⊢ ( 𝑦 = 𝑌 → ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) = ( 𝑍 ‘ ( 𝑆 ‘ 𝑌 ) ) ) | |
| 8 | 7 | sseq2d | ⊢ ( 𝑦 = 𝑌 → ( ( 𝑆 ‘ 𝑋 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ↔ ( 𝑆 ‘ 𝑋 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑌 ) ) ) ) |
| 9 | sneq | ⊢ ( 𝑥 = 𝑋 → { 𝑥 } = { 𝑋 } ) | |
| 10 | 9 | difeq2d | ⊢ ( 𝑥 = 𝑋 → ( 𝐼 ∖ { 𝑥 } ) = ( 𝐼 ∖ { 𝑋 } ) ) |
| 11 | fveq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝑆 ‘ 𝑥 ) = ( 𝑆 ‘ 𝑋 ) ) | |
| 12 | 11 | sseq1d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ↔ ( 𝑆 ‘ 𝑋 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ) ) |
| 13 | 10 12 | raleqbidv | ⊢ ( 𝑥 = 𝑋 → ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑋 } ) ( 𝑆 ‘ 𝑋 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ) ) |
| 14 | 1 2 | dprddomcld | ⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 15 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 16 | eqid | ⊢ ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) = ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) | |
| 17 | 6 15 16 | dmdprd | ⊢ ( ( 𝐼 ∈ V ∧ dom 𝑆 = 𝐼 ) → ( 𝐺 dom DProd 𝑆 ↔ ( 𝐺 ∈ Grp ∧ 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ) ) |
| 18 | 14 2 17 | syl2anc | ⊢ ( 𝜑 → ( 𝐺 dom DProd 𝑆 ↔ ( 𝐺 ∈ Grp ∧ 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ) ) |
| 19 | 1 18 | mpbid | ⊢ ( 𝜑 → ( 𝐺 ∈ Grp ∧ 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) ) |
| 20 | 19 | simp3d | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) ) |
| 21 | simpl | ⊢ ( ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) → ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ) | |
| 22 | 21 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐼 ( ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ∧ ( ( 𝑆 ‘ 𝑥 ) ∩ ( ( mrCls ‘ ( SubGrp ‘ 𝐺 ) ) ‘ ∪ ( 𝑆 “ ( 𝐼 ∖ { 𝑥 } ) ) ) ) = { ( 0g ‘ 𝐺 ) } ) → ∀ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
| 23 | 20 22 | syl | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑥 } ) ( 𝑆 ‘ 𝑥 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
| 24 | 13 23 3 | rspcdva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 𝐼 ∖ { 𝑋 } ) ( 𝑆 ‘ 𝑋 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑦 ) ) ) |
| 25 | 5 | necomd | ⊢ ( 𝜑 → 𝑌 ≠ 𝑋 ) |
| 26 | eldifsn | ⊢ ( 𝑌 ∈ ( 𝐼 ∖ { 𝑋 } ) ↔ ( 𝑌 ∈ 𝐼 ∧ 𝑌 ≠ 𝑋 ) ) | |
| 27 | 4 25 26 | sylanbrc | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐼 ∖ { 𝑋 } ) ) |
| 28 | 8 24 27 | rspcdva | ⊢ ( 𝜑 → ( 𝑆 ‘ 𝑋 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑌 ) ) ) |