This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of a function to be finitely supported (in relation to a given zero). (Contributed by AV, 23-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funisfsupp | ⊢ ( ( Fun 𝑅 ∧ 𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑅 finSupp 𝑍 ↔ ( 𝑅 supp 𝑍 ) ∈ Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfsupp | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑅 finSupp 𝑍 ↔ ( Fun 𝑅 ∧ ( 𝑅 supp 𝑍 ) ∈ Fin ) ) ) | |
| 2 | 1 | 3adant1 | ⊢ ( ( Fun 𝑅 ∧ 𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑅 finSupp 𝑍 ↔ ( Fun 𝑅 ∧ ( 𝑅 supp 𝑍 ) ∈ Fin ) ) ) |
| 3 | ibar | ⊢ ( Fun 𝑅 → ( ( 𝑅 supp 𝑍 ) ∈ Fin ↔ ( Fun 𝑅 ∧ ( 𝑅 supp 𝑍 ) ∈ Fin ) ) ) | |
| 4 | 3 | bicomd | ⊢ ( Fun 𝑅 → ( ( Fun 𝑅 ∧ ( 𝑅 supp 𝑍 ) ∈ Fin ) ↔ ( 𝑅 supp 𝑍 ) ∈ Fin ) ) |
| 5 | 4 | 3ad2ant1 | ⊢ ( ( Fun 𝑅 ∧ 𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( ( Fun 𝑅 ∧ ( 𝑅 supp 𝑍 ) ∈ Fin ) ↔ ( 𝑅 supp 𝑍 ) ∈ Fin ) ) |
| 6 | 2 5 | bitrd | ⊢ ( ( Fun 𝑅 ∧ 𝑅 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊 ) → ( 𝑅 finSupp 𝑍 ↔ ( 𝑅 supp 𝑍 ) ∈ Fin ) ) |