This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of a finite group sum. (Contributed by Mario Carneiro, 24-Apr-2016) (Revised by AV, 1-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumzcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| gsumzcl.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| gsumzcl.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| gsumzcl.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | ||
| gsumzcl.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| gsumzcl.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| gsumzcl.c | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) | ||
| gsumzcl.w | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | ||
| Assertion | gsumzcl | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumzcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | gsumzcl.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | gsumzcl.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 4 | gsumzcl.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | |
| 5 | gsumzcl.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 6 | gsumzcl.f | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 7 | gsumzcl.c | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) | |
| 8 | gsumzcl.w | ⊢ ( 𝜑 → 𝐹 finSupp 0 ) | |
| 9 | 8 | fsuppimpd | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ∈ Fin ) |
| 10 | 1 2 3 4 5 6 7 9 | gsumzcl2 | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ 𝐵 ) |