This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Take the difference of group sums over two families of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 14-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eldprdi.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| eldprdi.w | ⊢ 𝑊 = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } | ||
| eldprdi.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | ||
| eldprdi.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | ||
| eldprdi.3 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑊 ) | ||
| dprdfadd.4 | ⊢ ( 𝜑 → 𝐻 ∈ 𝑊 ) | ||
| dprdfsub.b | ⊢ − = ( -g ‘ 𝐺 ) | ||
| Assertion | dprdfsub | ⊢ ( 𝜑 → ( ( 𝐹 ∘f − 𝐻 ) ∈ 𝑊 ∧ ( 𝐺 Σg ( 𝐹 ∘f − 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) − ( 𝐺 Σg 𝐻 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldprdi.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 2 | eldprdi.w | ⊢ 𝑊 = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } | |
| 3 | eldprdi.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | |
| 4 | eldprdi.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | |
| 5 | eldprdi.3 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑊 ) | |
| 6 | dprdfadd.4 | ⊢ ( 𝜑 → 𝐻 ∈ 𝑊 ) | |
| 7 | dprdfsub.b | ⊢ − = ( -g ‘ 𝐺 ) | |
| 8 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 9 | 2 3 4 5 8 | dprdff | ⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) |
| 10 | 9 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( Base ‘ 𝐺 ) ) |
| 11 | 2 3 4 6 8 | dprdff | ⊢ ( 𝜑 → 𝐻 : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) |
| 12 | 11 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( 𝐻 ‘ 𝑘 ) ∈ ( Base ‘ 𝐺 ) ) |
| 13 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 14 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 15 | 8 13 14 7 | grpsubval | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝐻 ‘ 𝑘 ) ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝐹 ‘ 𝑘 ) − ( 𝐻 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) |
| 16 | 10 12 15 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑘 ) − ( 𝐻 ‘ 𝑘 ) ) = ( ( 𝐹 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) |
| 17 | 16 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐻 ‘ 𝑘 ) ) ) = ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
| 18 | 3 4 | dprddomcld | ⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 19 | 9 | feqmptd | ⊢ ( 𝜑 → 𝐹 = ( 𝑘 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑘 ) ) ) |
| 20 | 11 | feqmptd | ⊢ ( 𝜑 → 𝐻 = ( 𝑘 ∈ 𝐼 ↦ ( 𝐻 ‘ 𝑘 ) ) ) |
| 21 | 18 10 12 19 20 | offval2 | ⊢ ( 𝜑 → ( 𝐹 ∘f − 𝐻 ) = ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐻 ‘ 𝑘 ) ) ) ) |
| 22 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐼 ) → ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ∈ V ) | |
| 23 | dprdgrp | ⊢ ( 𝐺 dom DProd 𝑆 → 𝐺 ∈ Grp ) | |
| 24 | 3 23 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 25 | 8 14 24 | grpinvf1o | ⊢ ( 𝜑 → ( invg ‘ 𝐺 ) : ( Base ‘ 𝐺 ) –1-1-onto→ ( Base ‘ 𝐺 ) ) |
| 26 | f1of | ⊢ ( ( invg ‘ 𝐺 ) : ( Base ‘ 𝐺 ) –1-1-onto→ ( Base ‘ 𝐺 ) → ( invg ‘ 𝐺 ) : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) ) | |
| 27 | 25 26 | syl | ⊢ ( 𝜑 → ( invg ‘ 𝐺 ) : ( Base ‘ 𝐺 ) ⟶ ( Base ‘ 𝐺 ) ) |
| 28 | 27 | feqmptd | ⊢ ( 𝜑 → ( invg ‘ 𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 29 | fveq2 | ⊢ ( 𝑥 = ( 𝐻 ‘ 𝑘 ) → ( ( invg ‘ 𝐺 ) ‘ 𝑥 ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) | |
| 30 | 12 20 28 29 | fmptco | ⊢ ( 𝜑 → ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) = ( 𝑘 ∈ 𝐼 ↦ ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) |
| 31 | 18 10 22 19 30 | offval2 | ⊢ ( 𝜑 → ( 𝐹 ∘f ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) = ( 𝑘 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑘 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐻 ‘ 𝑘 ) ) ) ) ) |
| 32 | 17 21 31 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝐹 ∘f − 𝐻 ) = ( 𝐹 ∘f ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) |
| 33 | 1 2 3 4 6 14 | dprdfinv | ⊢ ( 𝜑 → ( ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ∈ 𝑊 ∧ ( 𝐺 Σg ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝐺 Σg 𝐻 ) ) ) ) |
| 34 | 33 | simpld | ⊢ ( 𝜑 → ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ∈ 𝑊 ) |
| 35 | 1 2 3 4 5 34 13 | dprdfadd | ⊢ ( 𝜑 → ( ( 𝐹 ∘f ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ∈ 𝑊 ∧ ( 𝐺 Σg ( 𝐹 ∘f ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) = ( ( 𝐺 Σg 𝐹 ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) ) ) |
| 36 | 35 | simpld | ⊢ ( 𝜑 → ( 𝐹 ∘f ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ∈ 𝑊 ) |
| 37 | 32 36 | eqeltrd | ⊢ ( 𝜑 → ( 𝐹 ∘f − 𝐻 ) ∈ 𝑊 ) |
| 38 | 32 | oveq2d | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ∘f − 𝐻 ) ) = ( 𝐺 Σg ( 𝐹 ∘f ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) ) |
| 39 | 33 | simprd | ⊢ ( 𝜑 → ( 𝐺 Σg ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝐺 Σg 𝐻 ) ) ) |
| 40 | 39 | oveq2d | ⊢ ( 𝜑 → ( ( 𝐺 Σg 𝐹 ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) = ( ( 𝐺 Σg 𝐹 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐺 Σg 𝐻 ) ) ) ) |
| 41 | 35 | simprd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ∘f ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) = ( ( 𝐺 Σg 𝐹 ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) ) |
| 42 | 8 | dprdssv | ⊢ ( 𝐺 DProd 𝑆 ) ⊆ ( Base ‘ 𝐺 ) |
| 43 | 1 2 3 4 5 | eldprdi | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ ( 𝐺 DProd 𝑆 ) ) |
| 44 | 42 43 | sselid | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) ∈ ( Base ‘ 𝐺 ) ) |
| 45 | 1 2 3 4 6 | eldprdi | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐻 ) ∈ ( 𝐺 DProd 𝑆 ) ) |
| 46 | 42 45 | sselid | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐻 ) ∈ ( Base ‘ 𝐺 ) ) |
| 47 | 8 13 14 7 | grpsubval | ⊢ ( ( ( 𝐺 Σg 𝐹 ) ∈ ( Base ‘ 𝐺 ) ∧ ( 𝐺 Σg 𝐻 ) ∈ ( Base ‘ 𝐺 ) ) → ( ( 𝐺 Σg 𝐹 ) − ( 𝐺 Σg 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐺 Σg 𝐻 ) ) ) ) |
| 48 | 44 46 47 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐺 Σg 𝐹 ) − ( 𝐺 Σg 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ‘ ( 𝐺 Σg 𝐻 ) ) ) ) |
| 49 | 40 41 48 | 3eqtr4d | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ∘f ( +g ‘ 𝐺 ) ( ( invg ‘ 𝐺 ) ∘ 𝐻 ) ) ) = ( ( 𝐺 Σg 𝐹 ) − ( 𝐺 Σg 𝐻 ) ) ) |
| 50 | 38 49 | eqtrd | ⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ∘f − 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) − ( 𝐺 Σg 𝐻 ) ) ) |
| 51 | 37 50 | jca | ⊢ ( 𝜑 → ( ( 𝐹 ∘f − 𝐻 ) ∈ 𝑊 ∧ ( 𝐺 Σg ( 𝐹 ∘f − 𝐻 ) ) = ( ( 𝐺 Σg 𝐹 ) − ( 𝐺 Σg 𝐻 ) ) ) ) |