This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function on the elements of an internal direct product has pairwise commuting values. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 11-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprdff.w | ⊢ 𝑊 = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } | |
| dprdff.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | ||
| dprdff.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | ||
| dprdff.3 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑊 ) | ||
| dprdfcntz.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | ||
| Assertion | dprdfcntz | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdff.w | ⊢ 𝑊 = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } | |
| 2 | dprdff.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | |
| 3 | dprdff.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | |
| 4 | dprdff.3 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑊 ) | |
| 5 | dprdfcntz.z | ⊢ 𝑍 = ( Cntz ‘ 𝐺 ) | |
| 6 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 7 | 1 2 3 4 6 | dprdff | ⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) |
| 8 | 7 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝐼 ) |
| 9 | 7 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝐺 ) ) |
| 10 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑦 = 𝑧 ) → 𝑦 = 𝑧 ) | |
| 11 | 10 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑦 = 𝑧 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 12 | 10 | equcomd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑦 = 𝑧 ) → 𝑧 = 𝑦 ) |
| 13 | 12 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑦 = 𝑧 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 14 | 11 13 | oveq12d | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑦 = 𝑧 ) → ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 15 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑦 ≠ 𝑧 ) → 𝐺 dom DProd 𝑆 ) |
| 16 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑦 ≠ 𝑧 ) → dom 𝑆 = 𝐼 ) |
| 17 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑦 ≠ 𝑧 ) → 𝑦 ∈ 𝐼 ) | |
| 18 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑦 ≠ 𝑧 ) → 𝑧 ∈ 𝐼 ) | |
| 19 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑦 ≠ 𝑧 ) → 𝑦 ≠ 𝑧 ) | |
| 20 | 15 16 17 18 19 5 | dprdcntz | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑦 ≠ 𝑧 ) → ( 𝑆 ‘ 𝑦 ) ⊆ ( 𝑍 ‘ ( 𝑆 ‘ 𝑧 ) ) ) |
| 21 | 1 2 3 4 | dprdfcl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝑆 ‘ 𝑦 ) ) |
| 22 | 21 | ad2antrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑦 ≠ 𝑧 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝑆 ‘ 𝑦 ) ) |
| 23 | 20 22 | sseldd | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑦 ≠ 𝑧 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝑍 ‘ ( 𝑆 ‘ 𝑧 ) ) ) |
| 24 | 1 2 3 4 | dprdfcl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝑆 ‘ 𝑧 ) ) |
| 25 | 24 | ad4ant13 | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑦 ≠ 𝑧 ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 𝑆 ‘ 𝑧 ) ) |
| 26 | eqid | ⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) | |
| 27 | 26 5 | cntzi | ⊢ ( ( ( 𝐹 ‘ 𝑦 ) ∈ ( 𝑍 ‘ ( 𝑆 ‘ 𝑧 ) ) ∧ ( 𝐹 ‘ 𝑧 ) ∈ ( 𝑆 ‘ 𝑧 ) ) → ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 28 | 23 25 27 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) ∧ 𝑧 ∈ 𝐼 ) ∧ 𝑦 ≠ 𝑧 ) → ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 29 | 14 28 | pm2.61dane | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 30 | 29 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ∀ 𝑧 ∈ 𝐼 ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 31 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → 𝐹 Fn 𝐼 ) |
| 32 | oveq2 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) = ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑧 ) ) ) | |
| 33 | oveq1 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → ( 𝑥 ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) | |
| 34 | 32 33 | eqeq12d | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → ( ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ↔ ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 35 | 34 | ralrn | ⊢ ( 𝐹 Fn 𝐼 → ( ∀ 𝑥 ∈ ran 𝐹 ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑧 ∈ 𝐼 ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 36 | 31 35 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( ∀ 𝑥 ∈ ran 𝐹 ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ↔ ∀ 𝑧 ∈ 𝐼 ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑧 ) ) = ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 37 | 30 36 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ∀ 𝑥 ∈ ran 𝐹 ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 38 | 7 | frnd | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( Base ‘ 𝐺 ) ) |
| 39 | 38 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ran 𝐹 ⊆ ( Base ‘ 𝐺 ) ) |
| 40 | 6 26 5 | elcntz | ⊢ ( ran 𝐹 ⊆ ( Base ‘ 𝐺 ) → ( ( 𝐹 ‘ 𝑦 ) ∈ ( 𝑍 ‘ ran 𝐹 ) ↔ ( ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ ran 𝐹 ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 41 | 39 40 | syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑦 ) ∈ ( 𝑍 ‘ ran 𝐹 ) ↔ ( ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝐺 ) ∧ ∀ 𝑥 ∈ ran 𝐹 ( ( 𝐹 ‘ 𝑦 ) ( +g ‘ 𝐺 ) 𝑥 ) = ( 𝑥 ( +g ‘ 𝐺 ) ( 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 42 | 9 37 41 | mpbir2and | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( 𝑍 ‘ ran 𝐹 ) ) |
| 43 | 42 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐼 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝑍 ‘ ran 𝐹 ) ) |
| 44 | ffnfv | ⊢ ( 𝐹 : 𝐼 ⟶ ( 𝑍 ‘ ran 𝐹 ) ↔ ( 𝐹 Fn 𝐼 ∧ ∀ 𝑦 ∈ 𝐼 ( 𝐹 ‘ 𝑦 ) ∈ ( 𝑍 ‘ ran 𝐹 ) ) ) | |
| 45 | 8 43 44 | sylanbrc | ⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ ( 𝑍 ‘ ran 𝐹 ) ) |
| 46 | 45 | frnd | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑍 ‘ ran 𝐹 ) ) |