This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity element of a group belongs to the group. (Contributed by NM, 27-Aug-2011) (Revised by Mario Carneiro, 27-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpidcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| grpidcl.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | ||
| Assertion | grpidcl | ⊢ ( 𝐺 ∈ Grp → 0 ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpidcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | grpidcl.o | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 3 | grpmnd | ⊢ ( 𝐺 ∈ Grp → 𝐺 ∈ Mnd ) | |
| 4 | 1 2 | mndidcl | ⊢ ( 𝐺 ∈ Mnd → 0 ∈ 𝐵 ) |
| 5 | 3 4 | syl | ⊢ ( 𝐺 ∈ Grp → 0 ∈ 𝐵 ) |