This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finitely supported function in S is a function into the base. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 11-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dprdff.w | ⊢ 𝑊 = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } | |
| dprdff.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | ||
| dprdff.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | ||
| dprdff.3 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑊 ) | ||
| dprdff.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | ||
| Assertion | dprdff | ⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dprdff.w | ⊢ 𝑊 = { ℎ ∈ X 𝑖 ∈ 𝐼 ( 𝑆 ‘ 𝑖 ) ∣ ℎ finSupp 0 } | |
| 2 | dprdff.1 | ⊢ ( 𝜑 → 𝐺 dom DProd 𝑆 ) | |
| 3 | dprdff.2 | ⊢ ( 𝜑 → dom 𝑆 = 𝐼 ) | |
| 4 | dprdff.3 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑊 ) | |
| 5 | dprdff.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 6 | 1 2 3 | dprdw | ⊢ ( 𝜑 → ( 𝐹 ∈ 𝑊 ↔ ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ∧ 𝐹 finSupp 0 ) ) ) |
| 7 | 4 6 | mpbid | ⊢ ( 𝜑 → ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ∧ 𝐹 finSupp 0 ) ) |
| 8 | 7 | simp1d | ⊢ ( 𝜑 → 𝐹 Fn 𝐼 ) |
| 9 | 7 | simp2d | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) ) |
| 10 | 2 3 | dprdf2 | ⊢ ( 𝜑 → 𝑆 : 𝐼 ⟶ ( SubGrp ‘ 𝐺 ) ) |
| 11 | 10 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑆 ‘ 𝑥 ) ∈ ( SubGrp ‘ 𝐺 ) ) |
| 12 | 5 | subgss | ⊢ ( ( 𝑆 ‘ 𝑥 ) ∈ ( SubGrp ‘ 𝐺 ) → ( 𝑆 ‘ 𝑥 ) ⊆ 𝐵 ) |
| 13 | 11 12 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑆 ‘ 𝑥 ) ⊆ 𝐵 ) |
| 14 | 13 | sseld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 15 | 14 | ralimdva | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑆 ‘ 𝑥 ) → ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) |
| 16 | 9 15 | mpd | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) |
| 17 | ffnfv | ⊢ ( 𝐹 : 𝐼 ⟶ 𝐵 ↔ ( 𝐹 Fn 𝐼 ∧ ∀ 𝑥 ∈ 𝐼 ( 𝐹 ‘ 𝑥 ) ∈ 𝐵 ) ) | |
| 18 | 8 16 17 | sylanbrc | ⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ 𝐵 ) |