This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Take the sum of group sums over two families of elements of disjoint subgroups. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 14-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | eldprdi.0 | |- .0. = ( 0g ` G ) |
|
| eldprdi.w | |- W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } |
||
| eldprdi.1 | |- ( ph -> G dom DProd S ) |
||
| eldprdi.2 | |- ( ph -> dom S = I ) |
||
| eldprdi.3 | |- ( ph -> F e. W ) |
||
| dprdfadd.4 | |- ( ph -> H e. W ) |
||
| dprdfadd.b | |- .+ = ( +g ` G ) |
||
| Assertion | dprdfadd | |- ( ph -> ( ( F oF .+ H ) e. W /\ ( G gsum ( F oF .+ H ) ) = ( ( G gsum F ) .+ ( G gsum H ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldprdi.0 | |- .0. = ( 0g ` G ) |
|
| 2 | eldprdi.w | |- W = { h e. X_ i e. I ( S ` i ) | h finSupp .0. } |
|
| 3 | eldprdi.1 | |- ( ph -> G dom DProd S ) |
|
| 4 | eldprdi.2 | |- ( ph -> dom S = I ) |
|
| 5 | eldprdi.3 | |- ( ph -> F e. W ) |
|
| 6 | dprdfadd.4 | |- ( ph -> H e. W ) |
|
| 7 | dprdfadd.b | |- .+ = ( +g ` G ) |
|
| 8 | 3 4 | dprddomcld | |- ( ph -> I e. _V ) |
| 9 | 2 3 4 5 | dprdfcl | |- ( ( ph /\ x e. I ) -> ( F ` x ) e. ( S ` x ) ) |
| 10 | 2 3 4 6 | dprdfcl | |- ( ( ph /\ x e. I ) -> ( H ` x ) e. ( S ` x ) ) |
| 11 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 12 | 2 3 4 5 11 | dprdff | |- ( ph -> F : I --> ( Base ` G ) ) |
| 13 | 12 | feqmptd | |- ( ph -> F = ( x e. I |-> ( F ` x ) ) ) |
| 14 | 2 3 4 6 11 | dprdff | |- ( ph -> H : I --> ( Base ` G ) ) |
| 15 | 14 | feqmptd | |- ( ph -> H = ( x e. I |-> ( H ` x ) ) ) |
| 16 | 8 9 10 13 15 | offval2 | |- ( ph -> ( F oF .+ H ) = ( x e. I |-> ( ( F ` x ) .+ ( H ` x ) ) ) ) |
| 17 | 3 4 | dprdf2 | |- ( ph -> S : I --> ( SubGrp ` G ) ) |
| 18 | 17 | ffvelcdmda | |- ( ( ph /\ x e. I ) -> ( S ` x ) e. ( SubGrp ` G ) ) |
| 19 | 7 | subgcl | |- ( ( ( S ` x ) e. ( SubGrp ` G ) /\ ( F ` x ) e. ( S ` x ) /\ ( H ` x ) e. ( S ` x ) ) -> ( ( F ` x ) .+ ( H ` x ) ) e. ( S ` x ) ) |
| 20 | 18 9 10 19 | syl3anc | |- ( ( ph /\ x e. I ) -> ( ( F ` x ) .+ ( H ` x ) ) e. ( S ` x ) ) |
| 21 | 2 3 4 5 | dprdffsupp | |- ( ph -> F finSupp .0. ) |
| 22 | 2 3 4 6 | dprdffsupp | |- ( ph -> H finSupp .0. ) |
| 23 | 21 22 | fsuppunfi | |- ( ph -> ( ( F supp .0. ) u. ( H supp .0. ) ) e. Fin ) |
| 24 | ssun1 | |- ( F supp .0. ) C_ ( ( F supp .0. ) u. ( H supp .0. ) ) |
|
| 25 | 24 | a1i | |- ( ph -> ( F supp .0. ) C_ ( ( F supp .0. ) u. ( H supp .0. ) ) ) |
| 26 | 1 | fvexi | |- .0. e. _V |
| 27 | 26 | a1i | |- ( ph -> .0. e. _V ) |
| 28 | 12 25 8 27 | suppssr | |- ( ( ph /\ x e. ( I \ ( ( F supp .0. ) u. ( H supp .0. ) ) ) ) -> ( F ` x ) = .0. ) |
| 29 | ssun2 | |- ( H supp .0. ) C_ ( ( F supp .0. ) u. ( H supp .0. ) ) |
|
| 30 | 29 | a1i | |- ( ph -> ( H supp .0. ) C_ ( ( F supp .0. ) u. ( H supp .0. ) ) ) |
| 31 | 14 30 8 27 | suppssr | |- ( ( ph /\ x e. ( I \ ( ( F supp .0. ) u. ( H supp .0. ) ) ) ) -> ( H ` x ) = .0. ) |
| 32 | 28 31 | oveq12d | |- ( ( ph /\ x e. ( I \ ( ( F supp .0. ) u. ( H supp .0. ) ) ) ) -> ( ( F ` x ) .+ ( H ` x ) ) = ( .0. .+ .0. ) ) |
| 33 | dprdgrp | |- ( G dom DProd S -> G e. Grp ) |
|
| 34 | 3 33 | syl | |- ( ph -> G e. Grp ) |
| 35 | 11 1 | grpidcl | |- ( G e. Grp -> .0. e. ( Base ` G ) ) |
| 36 | 11 7 1 | grplid | |- ( ( G e. Grp /\ .0. e. ( Base ` G ) ) -> ( .0. .+ .0. ) = .0. ) |
| 37 | 34 35 36 | syl2anc2 | |- ( ph -> ( .0. .+ .0. ) = .0. ) |
| 38 | 37 | adantr | |- ( ( ph /\ x e. ( I \ ( ( F supp .0. ) u. ( H supp .0. ) ) ) ) -> ( .0. .+ .0. ) = .0. ) |
| 39 | 32 38 | eqtrd | |- ( ( ph /\ x e. ( I \ ( ( F supp .0. ) u. ( H supp .0. ) ) ) ) -> ( ( F ` x ) .+ ( H ` x ) ) = .0. ) |
| 40 | 39 8 | suppss2 | |- ( ph -> ( ( x e. I |-> ( ( F ` x ) .+ ( H ` x ) ) ) supp .0. ) C_ ( ( F supp .0. ) u. ( H supp .0. ) ) ) |
| 41 | 23 40 | ssfid | |- ( ph -> ( ( x e. I |-> ( ( F ` x ) .+ ( H ` x ) ) ) supp .0. ) e. Fin ) |
| 42 | funmpt | |- Fun ( x e. I |-> ( ( F ` x ) .+ ( H ` x ) ) ) |
|
| 43 | 42 | a1i | |- ( ph -> Fun ( x e. I |-> ( ( F ` x ) .+ ( H ` x ) ) ) ) |
| 44 | 8 | mptexd | |- ( ph -> ( x e. I |-> ( ( F ` x ) .+ ( H ` x ) ) ) e. _V ) |
| 45 | funisfsupp | |- ( ( Fun ( x e. I |-> ( ( F ` x ) .+ ( H ` x ) ) ) /\ ( x e. I |-> ( ( F ` x ) .+ ( H ` x ) ) ) e. _V /\ .0. e. _V ) -> ( ( x e. I |-> ( ( F ` x ) .+ ( H ` x ) ) ) finSupp .0. <-> ( ( x e. I |-> ( ( F ` x ) .+ ( H ` x ) ) ) supp .0. ) e. Fin ) ) |
|
| 46 | 43 44 27 45 | syl3anc | |- ( ph -> ( ( x e. I |-> ( ( F ` x ) .+ ( H ` x ) ) ) finSupp .0. <-> ( ( x e. I |-> ( ( F ` x ) .+ ( H ` x ) ) ) supp .0. ) e. Fin ) ) |
| 47 | 41 46 | mpbird | |- ( ph -> ( x e. I |-> ( ( F ` x ) .+ ( H ` x ) ) ) finSupp .0. ) |
| 48 | 2 3 4 20 47 | dprdwd | |- ( ph -> ( x e. I |-> ( ( F ` x ) .+ ( H ` x ) ) ) e. W ) |
| 49 | 16 48 | eqeltrd | |- ( ph -> ( F oF .+ H ) e. W ) |
| 50 | eqid | |- ( Cntz ` G ) = ( Cntz ` G ) |
|
| 51 | 34 | grpmndd | |- ( ph -> G e. Mnd ) |
| 52 | eqid | |- ( ( F u. H ) supp .0. ) = ( ( F u. H ) supp .0. ) |
|
| 53 | 2 3 4 5 50 | dprdfcntz | |- ( ph -> ran F C_ ( ( Cntz ` G ) ` ran F ) ) |
| 54 | 2 3 4 6 50 | dprdfcntz | |- ( ph -> ran H C_ ( ( Cntz ` G ) ` ran H ) ) |
| 55 | 2 3 4 49 50 | dprdfcntz | |- ( ph -> ran ( F oF .+ H ) C_ ( ( Cntz ` G ) ` ran ( F oF .+ H ) ) ) |
| 56 | 51 | adantr | |- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> G e. Mnd ) |
| 57 | vex | |- x e. _V |
|
| 58 | 57 | a1i | |- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> x e. _V ) |
| 59 | eldifi | |- ( k e. ( I \ x ) -> k e. I ) |
|
| 60 | 59 | adantl | |- ( ( x C_ I /\ k e. ( I \ x ) ) -> k e. I ) |
| 61 | ffvelcdm | |- ( ( F : I --> ( Base ` G ) /\ k e. I ) -> ( F ` k ) e. ( Base ` G ) ) |
|
| 62 | 12 60 61 | syl2an | |- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> ( F ` k ) e. ( Base ` G ) ) |
| 63 | 62 | snssd | |- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> { ( F ` k ) } C_ ( Base ` G ) ) |
| 64 | 11 50 | cntzsubm | |- ( ( G e. Mnd /\ { ( F ` k ) } C_ ( Base ` G ) ) -> ( ( Cntz ` G ) ` { ( F ` k ) } ) e. ( SubMnd ` G ) ) |
| 65 | 56 63 64 | syl2anc | |- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> ( ( Cntz ` G ) ` { ( F ` k ) } ) e. ( SubMnd ` G ) ) |
| 66 | 14 | adantr | |- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> H : I --> ( Base ` G ) ) |
| 67 | 66 | ffnd | |- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> H Fn I ) |
| 68 | simprl | |- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> x C_ I ) |
|
| 69 | fnssres | |- ( ( H Fn I /\ x C_ I ) -> ( H |` x ) Fn x ) |
|
| 70 | 67 68 69 | syl2anc | |- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> ( H |` x ) Fn x ) |
| 71 | fvres | |- ( y e. x -> ( ( H |` x ) ` y ) = ( H ` y ) ) |
|
| 72 | 71 | adantl | |- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> ( ( H |` x ) ` y ) = ( H ` y ) ) |
| 73 | 3 | ad2antrr | |- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> G dom DProd S ) |
| 74 | 4 | ad2antrr | |- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> dom S = I ) |
| 75 | 73 74 | dprdf2 | |- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> S : I --> ( SubGrp ` G ) ) |
| 76 | 60 | ad2antlr | |- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> k e. I ) |
| 77 | 75 76 | ffvelcdmd | |- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> ( S ` k ) e. ( SubGrp ` G ) ) |
| 78 | 11 | subgss | |- ( ( S ` k ) e. ( SubGrp ` G ) -> ( S ` k ) C_ ( Base ` G ) ) |
| 79 | 77 78 | syl | |- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> ( S ` k ) C_ ( Base ` G ) ) |
| 80 | 5 | ad2antrr | |- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> F e. W ) |
| 81 | 2 73 74 80 | dprdfcl | |- ( ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) /\ k e. I ) -> ( F ` k ) e. ( S ` k ) ) |
| 82 | 76 81 | mpdan | |- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> ( F ` k ) e. ( S ` k ) ) |
| 83 | 82 | snssd | |- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> { ( F ` k ) } C_ ( S ` k ) ) |
| 84 | 11 50 | cntz2ss | |- ( ( ( S ` k ) C_ ( Base ` G ) /\ { ( F ` k ) } C_ ( S ` k ) ) -> ( ( Cntz ` G ) ` ( S ` k ) ) C_ ( ( Cntz ` G ) ` { ( F ` k ) } ) ) |
| 85 | 79 83 84 | syl2anc | |- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> ( ( Cntz ` G ) ` ( S ` k ) ) C_ ( ( Cntz ` G ) ` { ( F ` k ) } ) ) |
| 86 | 68 | sselda | |- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> y e. I ) |
| 87 | simpr | |- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> y e. x ) |
|
| 88 | simplrr | |- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> k e. ( I \ x ) ) |
|
| 89 | 88 | eldifbd | |- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> -. k e. x ) |
| 90 | nelne2 | |- ( ( y e. x /\ -. k e. x ) -> y =/= k ) |
|
| 91 | 87 89 90 | syl2anc | |- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> y =/= k ) |
| 92 | 73 74 86 76 91 50 | dprdcntz | |- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> ( S ` y ) C_ ( ( Cntz ` G ) ` ( S ` k ) ) ) |
| 93 | 6 | ad2antrr | |- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> H e. W ) |
| 94 | 2 73 74 93 | dprdfcl | |- ( ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) /\ y e. I ) -> ( H ` y ) e. ( S ` y ) ) |
| 95 | 86 94 | mpdan | |- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> ( H ` y ) e. ( S ` y ) ) |
| 96 | 92 95 | sseldd | |- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> ( H ` y ) e. ( ( Cntz ` G ) ` ( S ` k ) ) ) |
| 97 | 85 96 | sseldd | |- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> ( H ` y ) e. ( ( Cntz ` G ) ` { ( F ` k ) } ) ) |
| 98 | 72 97 | eqeltrd | |- ( ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) /\ y e. x ) -> ( ( H |` x ) ` y ) e. ( ( Cntz ` G ) ` { ( F ` k ) } ) ) |
| 99 | 98 | ralrimiva | |- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> A. y e. x ( ( H |` x ) ` y ) e. ( ( Cntz ` G ) ` { ( F ` k ) } ) ) |
| 100 | ffnfv | |- ( ( H |` x ) : x --> ( ( Cntz ` G ) ` { ( F ` k ) } ) <-> ( ( H |` x ) Fn x /\ A. y e. x ( ( H |` x ) ` y ) e. ( ( Cntz ` G ) ` { ( F ` k ) } ) ) ) |
|
| 101 | 70 99 100 | sylanbrc | |- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> ( H |` x ) : x --> ( ( Cntz ` G ) ` { ( F ` k ) } ) ) |
| 102 | resss | |- ( H |` x ) C_ H |
|
| 103 | 102 | rnssi | |- ran ( H |` x ) C_ ran H |
| 104 | 50 | cntzidss | |- ( ( ran H C_ ( ( Cntz ` G ) ` ran H ) /\ ran ( H |` x ) C_ ran H ) -> ran ( H |` x ) C_ ( ( Cntz ` G ) ` ran ( H |` x ) ) ) |
| 105 | 54 103 104 | sylancl | |- ( ph -> ran ( H |` x ) C_ ( ( Cntz ` G ) ` ran ( H |` x ) ) ) |
| 106 | 105 | adantr | |- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> ran ( H |` x ) C_ ( ( Cntz ` G ) ` ran ( H |` x ) ) ) |
| 107 | 22 27 | fsuppres | |- ( ph -> ( H |` x ) finSupp .0. ) |
| 108 | 107 | adantr | |- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> ( H |` x ) finSupp .0. ) |
| 109 | 1 50 56 58 65 101 106 108 | gsumzsubmcl | |- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> ( G gsum ( H |` x ) ) e. ( ( Cntz ` G ) ` { ( F ` k ) } ) ) |
| 110 | 109 | snssd | |- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> { ( G gsum ( H |` x ) ) } C_ ( ( Cntz ` G ) ` { ( F ` k ) } ) ) |
| 111 | 66 68 | fssresd | |- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> ( H |` x ) : x --> ( Base ` G ) ) |
| 112 | 11 1 50 56 58 111 106 108 | gsumzcl | |- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> ( G gsum ( H |` x ) ) e. ( Base ` G ) ) |
| 113 | 112 | snssd | |- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> { ( G gsum ( H |` x ) ) } C_ ( Base ` G ) ) |
| 114 | 11 50 | cntzrec | |- ( ( { ( G gsum ( H |` x ) ) } C_ ( Base ` G ) /\ { ( F ` k ) } C_ ( Base ` G ) ) -> ( { ( G gsum ( H |` x ) ) } C_ ( ( Cntz ` G ) ` { ( F ` k ) } ) <-> { ( F ` k ) } C_ ( ( Cntz ` G ) ` { ( G gsum ( H |` x ) ) } ) ) ) |
| 115 | 113 63 114 | syl2anc | |- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> ( { ( G gsum ( H |` x ) ) } C_ ( ( Cntz ` G ) ` { ( F ` k ) } ) <-> { ( F ` k ) } C_ ( ( Cntz ` G ) ` { ( G gsum ( H |` x ) ) } ) ) ) |
| 116 | 110 115 | mpbid | |- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> { ( F ` k ) } C_ ( ( Cntz ` G ) ` { ( G gsum ( H |` x ) ) } ) ) |
| 117 | fvex | |- ( F ` k ) e. _V |
|
| 118 | 117 | snss | |- ( ( F ` k ) e. ( ( Cntz ` G ) ` { ( G gsum ( H |` x ) ) } ) <-> { ( F ` k ) } C_ ( ( Cntz ` G ) ` { ( G gsum ( H |` x ) ) } ) ) |
| 119 | 116 118 | sylibr | |- ( ( ph /\ ( x C_ I /\ k e. ( I \ x ) ) ) -> ( F ` k ) e. ( ( Cntz ` G ) ` { ( G gsum ( H |` x ) ) } ) ) |
| 120 | 11 1 7 50 51 8 21 22 52 12 14 53 54 55 119 | gsumzaddlem | |- ( ph -> ( G gsum ( F oF .+ H ) ) = ( ( G gsum F ) .+ ( G gsum H ) ) ) |
| 121 | 49 120 | jca | |- ( ph -> ( ( F oF .+ H ) e. W /\ ( G gsum ( F oF .+ H ) ) = ( ( G gsum F ) .+ ( G gsum H ) ) ) ) |