This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extension by continuity. Theorem 1 of BourbakiTop1 p. I.57. Given a topology J on C , a subset A dense in C , this states a condition for F from A to a regular space K to be extensible by continuity. (Contributed by Thierry Arnoux, 1-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnextf.1 | ⊢ 𝐶 = ∪ 𝐽 | |
| cnextf.2 | ⊢ 𝐵 = ∪ 𝐾 | ||
| cnextf.3 | ⊢ ( 𝜑 → 𝐽 ∈ Top ) | ||
| cnextf.4 | ⊢ ( 𝜑 → 𝐾 ∈ Haus ) | ||
| cnextf.5 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| cnextf.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) | ||
| cnextf.6 | ⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝐶 ) | ||
| cnextf.7 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ) | ||
| cnextcn.8 | ⊢ ( 𝜑 → 𝐾 ∈ Reg ) | ||
| Assertion | cnextcn | ⊢ ( 𝜑 → ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnextf.1 | ⊢ 𝐶 = ∪ 𝐽 | |
| 2 | cnextf.2 | ⊢ 𝐵 = ∪ 𝐾 | |
| 3 | cnextf.3 | ⊢ ( 𝜑 → 𝐽 ∈ Top ) | |
| 4 | cnextf.4 | ⊢ ( 𝜑 → 𝐾 ∈ Haus ) | |
| 5 | cnextf.5 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 6 | cnextf.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) | |
| 7 | cnextf.6 | ⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝐶 ) | |
| 8 | cnextf.7 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ) | |
| 9 | cnextcn.8 | ⊢ ( 𝜑 → 𝐾 ∈ Reg ) | |
| 10 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) → 𝜑 ) | |
| 11 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ∧ 𝑑 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ∧ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑑 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) ) → 𝜑 ) | |
| 12 | simpr3 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ∧ 𝑑 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ∧ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑑 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) ) → ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑑 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) | |
| 13 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ∧ 𝑑 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ∧ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑑 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) ) → 𝐽 ∈ Top ) |
| 14 | simpr2 | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ∧ 𝑑 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ∧ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑑 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) ) → 𝑑 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) | |
| 15 | neii2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑑 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) → ∃ 𝑣 ∈ 𝐽 ( { 𝑥 } ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑑 ) ) | |
| 16 | 13 14 15 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ∧ 𝑑 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ∧ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑑 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) ) → ∃ 𝑣 ∈ 𝐽 ( { 𝑥 } ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑑 ) ) |
| 17 | vex | ⊢ 𝑥 ∈ V | |
| 18 | 17 | snss | ⊢ ( 𝑥 ∈ 𝑣 ↔ { 𝑥 } ⊆ 𝑣 ) |
| 19 | 18 | biimpri | ⊢ ( { 𝑥 } ⊆ 𝑣 → 𝑥 ∈ 𝑣 ) |
| 20 | 19 | anim1i | ⊢ ( ( { 𝑥 } ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑑 ) → ( 𝑥 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑑 ) ) |
| 21 | 20 | anim2i | ⊢ ( ( 𝑣 ∈ 𝐽 ∧ ( { 𝑥 } ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑑 ) ) → ( 𝑣 ∈ 𝐽 ∧ ( 𝑥 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑑 ) ) ) |
| 22 | 21 | anim2i | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐽 ∧ ( { 𝑥 } ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑑 ) ) ) → ( 𝜑 ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝑥 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑑 ) ) ) ) |
| 23 | 22 | ex | ⊢ ( 𝜑 → ( ( 𝑣 ∈ 𝐽 ∧ ( { 𝑥 } ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑑 ) ) → ( 𝜑 ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝑥 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑑 ) ) ) ) ) |
| 24 | 3anass | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ∧ 𝑥 ∈ 𝑣 ) ↔ ( 𝜑 ∧ ( 𝑣 ∈ 𝐽 ∧ 𝑥 ∈ 𝑣 ) ) ) | |
| 25 | 24 | anbi1i | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ∧ 𝑥 ∈ 𝑣 ) ∧ 𝑣 ⊆ 𝑑 ) ↔ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐽 ∧ 𝑥 ∈ 𝑣 ) ) ∧ 𝑣 ⊆ 𝑑 ) ) |
| 26 | anass | ⊢ ( ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐽 ∧ 𝑥 ∈ 𝑣 ) ) ∧ 𝑣 ⊆ 𝑑 ) ↔ ( 𝜑 ∧ ( ( 𝑣 ∈ 𝐽 ∧ 𝑥 ∈ 𝑣 ) ∧ 𝑣 ⊆ 𝑑 ) ) ) | |
| 27 | anass | ⊢ ( ( ( 𝑣 ∈ 𝐽 ∧ 𝑥 ∈ 𝑣 ) ∧ 𝑣 ⊆ 𝑑 ) ↔ ( 𝑣 ∈ 𝐽 ∧ ( 𝑥 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑑 ) ) ) | |
| 28 | 27 | anbi2i | ⊢ ( ( 𝜑 ∧ ( ( 𝑣 ∈ 𝐽 ∧ 𝑥 ∈ 𝑣 ) ∧ 𝑣 ⊆ 𝑑 ) ) ↔ ( 𝜑 ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝑥 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑑 ) ) ) ) |
| 29 | 25 26 28 | 3bitri | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ∧ 𝑥 ∈ 𝑣 ) ∧ 𝑣 ⊆ 𝑑 ) ↔ ( 𝜑 ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝑥 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑑 ) ) ) ) |
| 30 | opnneip | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑣 ∈ 𝐽 ∧ 𝑥 ∈ 𝑣 ) → 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) | |
| 31 | 3 30 | syl3an1 | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ∧ 𝑥 ∈ 𝑣 ) → 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) |
| 32 | 31 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ∧ 𝑥 ∈ 𝑣 ) ∧ 𝑣 ⊆ 𝑑 ) → 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) |
| 33 | simpr2 | ⊢ ( ( 𝑣 ⊆ 𝑑 ∧ ( 𝜑 ∧ 𝑣 ∈ 𝐽 ∧ 𝑥 ∈ 𝑣 ) ) → 𝑣 ∈ 𝐽 ) | |
| 34 | 33 | ex | ⊢ ( 𝑣 ⊆ 𝑑 → ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ∧ 𝑥 ∈ 𝑣 ) → 𝑣 ∈ 𝐽 ) ) |
| 35 | 34 | imdistanri | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ∧ 𝑥 ∈ 𝑣 ) ∧ 𝑣 ⊆ 𝑑 ) → ( 𝑣 ∈ 𝐽 ∧ 𝑣 ⊆ 𝑑 ) ) |
| 36 | 32 35 | jca | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ∧ 𝑥 ∈ 𝑣 ) ∧ 𝑣 ⊆ 𝑑 ) → ( 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ∧ ( 𝑣 ∈ 𝐽 ∧ 𝑣 ⊆ 𝑑 ) ) ) |
| 37 | 29 36 | sylbir | ⊢ ( ( 𝜑 ∧ ( 𝑣 ∈ 𝐽 ∧ ( 𝑥 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑑 ) ) ) → ( 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ∧ ( 𝑣 ∈ 𝐽 ∧ 𝑣 ⊆ 𝑑 ) ) ) |
| 38 | 23 37 | syl6 | ⊢ ( 𝜑 → ( ( 𝑣 ∈ 𝐽 ∧ ( { 𝑥 } ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑑 ) ) → ( 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ∧ ( 𝑣 ∈ 𝐽 ∧ 𝑣 ⊆ 𝑑 ) ) ) ) |
| 39 | 38 | adantr | ⊢ ( ( 𝜑 ∧ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑑 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) → ( ( 𝑣 ∈ 𝐽 ∧ ( { 𝑥 } ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑑 ) ) → ( 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ∧ ( 𝑣 ∈ 𝐽 ∧ 𝑣 ⊆ 𝑑 ) ) ) ) |
| 40 | haustop | ⊢ ( 𝐾 ∈ Haus → 𝐾 ∈ Top ) | |
| 41 | 4 40 | syl | ⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 42 | imassrn | ⊢ ( 𝐹 “ ( 𝑑 ∩ 𝐴 ) ) ⊆ ran 𝐹 | |
| 43 | 5 | frnd | ⊢ ( 𝜑 → ran 𝐹 ⊆ 𝐵 ) |
| 44 | 42 43 | sstrid | ⊢ ( 𝜑 → ( 𝐹 “ ( 𝑑 ∩ 𝐴 ) ) ⊆ 𝐵 ) |
| 45 | ssrin | ⊢ ( 𝑣 ⊆ 𝑑 → ( 𝑣 ∩ 𝐴 ) ⊆ ( 𝑑 ∩ 𝐴 ) ) | |
| 46 | imass2 | ⊢ ( ( 𝑣 ∩ 𝐴 ) ⊆ ( 𝑑 ∩ 𝐴 ) → ( 𝐹 “ ( 𝑣 ∩ 𝐴 ) ) ⊆ ( 𝐹 “ ( 𝑑 ∩ 𝐴 ) ) ) | |
| 47 | 45 46 | syl | ⊢ ( 𝑣 ⊆ 𝑑 → ( 𝐹 “ ( 𝑣 ∩ 𝐴 ) ) ⊆ ( 𝐹 “ ( 𝑑 ∩ 𝐴 ) ) ) |
| 48 | 2 | clsss | ⊢ ( ( 𝐾 ∈ Top ∧ ( 𝐹 “ ( 𝑑 ∩ 𝐴 ) ) ⊆ 𝐵 ∧ ( 𝐹 “ ( 𝑣 ∩ 𝐴 ) ) ⊆ ( 𝐹 “ ( 𝑑 ∩ 𝐴 ) ) ) → ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑣 ∩ 𝐴 ) ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑑 ∩ 𝐴 ) ) ) ) |
| 49 | 41 44 47 48 | syl2an3an | ⊢ ( ( 𝜑 ∧ 𝑣 ⊆ 𝑑 ) → ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑣 ∩ 𝐴 ) ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑑 ∩ 𝐴 ) ) ) ) |
| 50 | sstr | ⊢ ( ( ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑣 ∩ 𝐴 ) ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑑 ∩ 𝐴 ) ) ) ∧ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑑 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) → ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑣 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) | |
| 51 | 49 50 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝑣 ⊆ 𝑑 ) ∧ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑑 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) → ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑣 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) |
| 52 | 51 | an32s | ⊢ ( ( ( 𝜑 ∧ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑑 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) ∧ 𝑣 ⊆ 𝑑 ) → ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑣 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) |
| 53 | 52 | ex | ⊢ ( ( 𝜑 ∧ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑑 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) → ( 𝑣 ⊆ 𝑑 → ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑣 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) ) |
| 54 | 53 | anim2d | ⊢ ( ( 𝜑 ∧ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑑 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) → ( ( 𝑣 ∈ 𝐽 ∧ 𝑣 ⊆ 𝑑 ) → ( 𝑣 ∈ 𝐽 ∧ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑣 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) ) ) |
| 55 | 54 | anim2d | ⊢ ( ( 𝜑 ∧ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑑 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) → ( ( 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ∧ ( 𝑣 ∈ 𝐽 ∧ 𝑣 ⊆ 𝑑 ) ) → ( 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑣 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) ) ) ) |
| 56 | 39 55 | syld | ⊢ ( ( 𝜑 ∧ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑑 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) → ( ( 𝑣 ∈ 𝐽 ∧ ( { 𝑥 } ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑑 ) ) → ( 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ∧ ( 𝑣 ∈ 𝐽 ∧ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑣 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) ) ) ) |
| 57 | 56 | reximdv2 | ⊢ ( ( 𝜑 ∧ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑑 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) → ( ∃ 𝑣 ∈ 𝐽 ( { 𝑥 } ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑑 ) → ∃ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝑣 ∈ 𝐽 ∧ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑣 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) ) ) |
| 58 | 57 | imp | ⊢ ( ( ( 𝜑 ∧ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑑 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) ∧ ∃ 𝑣 ∈ 𝐽 ( { 𝑥 } ⊆ 𝑣 ∧ 𝑣 ⊆ 𝑑 ) ) → ∃ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝑣 ∈ 𝐽 ∧ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑣 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) ) |
| 59 | 11 12 16 58 | syl21anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ ( 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ∧ 𝑑 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ∧ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑑 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) ) → ∃ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝑣 ∈ 𝐽 ∧ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑣 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) ) |
| 60 | 59 | 3anassrs | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) ∧ 𝑑 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) ∧ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑑 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) → ∃ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝑣 ∈ 𝐽 ∧ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑣 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) ) |
| 61 | simpr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) ∧ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ∧ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑢 ) ) ⊆ 𝑤 ) → ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑢 ) ) ⊆ 𝑤 ) | |
| 62 | simp-4l | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) ∧ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ∧ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑢 ) ) ⊆ 𝑤 ) → 𝜑 ) | |
| 63 | simplr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) ∧ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ∧ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑢 ) ) ⊆ 𝑤 ) → 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) | |
| 64 | imaeq2 | ⊢ ( 𝑢 = ( 𝑑 ∩ 𝐴 ) → ( 𝐹 “ 𝑢 ) = ( 𝐹 “ ( 𝑑 ∩ 𝐴 ) ) ) | |
| 65 | 64 | fveq2d | ⊢ ( 𝑢 = ( 𝑑 ∩ 𝐴 ) → ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑢 ) ) = ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑑 ∩ 𝐴 ) ) ) ) |
| 66 | 65 | sseq1d | ⊢ ( 𝑢 = ( 𝑑 ∩ 𝐴 ) → ( ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑢 ) ) ⊆ 𝑤 ↔ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑑 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) ) |
| 67 | 66 | biimpcd | ⊢ ( ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑢 ) ) ⊆ 𝑤 → ( 𝑢 = ( 𝑑 ∩ 𝐴 ) → ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑑 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) ) |
| 68 | 67 | reximdv | ⊢ ( ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑢 ) ) ⊆ 𝑤 → ( ∃ 𝑑 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) 𝑢 = ( 𝑑 ∩ 𝐴 ) → ∃ 𝑑 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑑 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) ) |
| 69 | fvexd | ⊢ ( 𝜑 → ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ∈ V ) | |
| 70 | 1 | toptopon | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝐶 ) ) |
| 71 | 3 70 | sylib | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝐶 ) ) |
| 72 | 71 | elfvexd | ⊢ ( 𝜑 → 𝐶 ∈ V ) |
| 73 | 72 6 | ssexd | ⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 74 | elrest | ⊢ ( ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ∈ V ∧ 𝐴 ∈ V ) → ( 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ↔ ∃ 𝑑 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) 𝑢 = ( 𝑑 ∩ 𝐴 ) ) ) | |
| 75 | 69 73 74 | syl2anc | ⊢ ( 𝜑 → ( 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ↔ ∃ 𝑑 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) 𝑢 = ( 𝑑 ∩ 𝐴 ) ) ) |
| 76 | 75 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) → ∃ 𝑑 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) 𝑢 = ( 𝑑 ∩ 𝐴 ) ) |
| 77 | 68 76 | impel | ⊢ ( ( ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑢 ) ) ⊆ 𝑤 ∧ ( 𝜑 ∧ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ) → ∃ 𝑑 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑑 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) |
| 78 | 61 62 63 77 | syl12anc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) ∧ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ∧ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑢 ) ) ⊆ 𝑤 ) → ∃ 𝑑 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑑 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) |
| 79 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐶 ↔ 𝑦 ∈ 𝐶 ) ) | |
| 80 | 79 | anbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ↔ ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 81 | sneq | ⊢ ( 𝑥 = 𝑦 → { 𝑥 } = { 𝑦 } ) | |
| 82 | 81 | fveq2d | ⊢ ( 𝑥 = 𝑦 → ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) = ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ) |
| 83 | 82 | oveq1d | ⊢ ( 𝑥 = 𝑦 → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) = ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) |
| 84 | 83 | oveq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) = ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ) |
| 85 | 84 | fveq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) = ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) |
| 86 | 85 | neeq1d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ↔ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ) ) |
| 87 | 80 86 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ) ) ) |
| 88 | 87 8 | chvarvv | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ) |
| 89 | 1 2 3 4 5 6 7 88 | cnextfvval | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) = ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) |
| 90 | fvex | ⊢ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ∈ V | |
| 91 | 90 | uniex | ⊢ ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ∈ V |
| 92 | 91 | snid | ⊢ ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ∈ { ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) } |
| 93 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐾 ∈ Haus ) |
| 94 | 7 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ 𝑥 ∈ 𝐶 ) ) |
| 95 | 94 | biimpar | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) |
| 96 | 71 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐽 ∈ ( TopOn ‘ 𝐶 ) ) |
| 97 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐴 ⊆ 𝐶 ) |
| 98 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ 𝐶 ) | |
| 99 | trnei | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝐶 ) ∧ 𝐴 ⊆ 𝐶 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ) ) | |
| 100 | 96 97 98 99 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ) ) |
| 101 | 95 100 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ) |
| 102 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 103 | 2 | hausflf2 | ⊢ ( ( ( 𝐾 ∈ Haus ∧ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≈ 1o ) |
| 104 | 93 101 102 8 103 | syl31anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≈ 1o ) |
| 105 | en1b | ⊢ ( ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≈ 1o ↔ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) = { ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) } ) | |
| 106 | 104 105 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) = { ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) } ) |
| 107 | 92 106 | eleqtrrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) |
| 108 | 89 107 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) |
| 109 | 2 | toptopon | ⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ 𝐵 ) ) |
| 110 | 41 109 | sylib | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝐵 ) ) |
| 111 | 110 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐾 ∈ ( TopOn ‘ 𝐵 ) ) |
| 112 | flfnei | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝐵 ) ∧ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ↔ ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) ∈ 𝐵 ∧ ∀ 𝑏 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ∃ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ( 𝐹 “ 𝑢 ) ⊆ 𝑏 ) ) ) | |
| 113 | 111 101 102 112 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ↔ ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) ∈ 𝐵 ∧ ∀ 𝑏 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ∃ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ( 𝐹 “ 𝑢 ) ⊆ 𝑏 ) ) ) |
| 114 | 108 113 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) ∈ 𝐵 ∧ ∀ 𝑏 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ∃ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ( 𝐹 “ 𝑢 ) ⊆ 𝑏 ) ) |
| 115 | 114 | simprd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ∀ 𝑏 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ∃ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ( 𝐹 “ 𝑢 ) ⊆ 𝑏 ) |
| 116 | 115 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑏 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) → ∃ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ( 𝐹 “ 𝑢 ) ⊆ 𝑏 ) |
| 117 | 116 | ad4ant13 | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) ∧ 𝑏 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) ∧ ( ( cls ‘ 𝐾 ) ‘ 𝑏 ) ⊆ 𝑤 ) → ∃ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ( 𝐹 “ 𝑢 ) ⊆ 𝑏 ) |
| 118 | 41 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑏 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) ∧ ( ( cls ‘ 𝐾 ) ‘ 𝑏 ) ⊆ 𝑤 ) → 𝐾 ∈ Top ) |
| 119 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑏 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) ∧ ( ( cls ‘ 𝐾 ) ‘ 𝑏 ) ⊆ 𝑤 ) → 𝑏 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) | |
| 120 | 2 | neii1 | ⊢ ( ( 𝐾 ∈ Top ∧ 𝑏 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) → 𝑏 ⊆ 𝐵 ) |
| 121 | 118 119 120 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑏 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) ∧ ( ( cls ‘ 𝐾 ) ‘ 𝑏 ) ⊆ 𝑤 ) → 𝑏 ⊆ 𝐵 ) |
| 122 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑏 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) ∧ ( ( cls ‘ 𝐾 ) ‘ 𝑏 ) ⊆ 𝑤 ) → ( ( cls ‘ 𝐾 ) ‘ 𝑏 ) ⊆ 𝑤 ) | |
| 123 | 2 | clsss | ⊢ ( ( 𝐾 ∈ Top ∧ 𝑏 ⊆ 𝐵 ∧ ( 𝐹 “ 𝑢 ) ⊆ 𝑏 ) → ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑢 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ 𝑏 ) ) |
| 124 | sstr | ⊢ ( ( ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑢 ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ 𝑏 ) ∧ ( ( cls ‘ 𝐾 ) ‘ 𝑏 ) ⊆ 𝑤 ) → ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑢 ) ) ⊆ 𝑤 ) | |
| 125 | 123 124 | sylan | ⊢ ( ( ( 𝐾 ∈ Top ∧ 𝑏 ⊆ 𝐵 ∧ ( 𝐹 “ 𝑢 ) ⊆ 𝑏 ) ∧ ( ( cls ‘ 𝐾 ) ‘ 𝑏 ) ⊆ 𝑤 ) → ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑢 ) ) ⊆ 𝑤 ) |
| 126 | 125 | 3an1rs | ⊢ ( ( ( 𝐾 ∈ Top ∧ 𝑏 ⊆ 𝐵 ∧ ( ( cls ‘ 𝐾 ) ‘ 𝑏 ) ⊆ 𝑤 ) ∧ ( 𝐹 “ 𝑢 ) ⊆ 𝑏 ) → ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑢 ) ) ⊆ 𝑤 ) |
| 127 | 126 | ex | ⊢ ( ( 𝐾 ∈ Top ∧ 𝑏 ⊆ 𝐵 ∧ ( ( cls ‘ 𝐾 ) ‘ 𝑏 ) ⊆ 𝑤 ) → ( ( 𝐹 “ 𝑢 ) ⊆ 𝑏 → ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑢 ) ) ⊆ 𝑤 ) ) |
| 128 | 127 | reximdv | ⊢ ( ( 𝐾 ∈ Top ∧ 𝑏 ⊆ 𝐵 ∧ ( ( cls ‘ 𝐾 ) ‘ 𝑏 ) ⊆ 𝑤 ) → ( ∃ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ( 𝐹 “ 𝑢 ) ⊆ 𝑏 → ∃ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑢 ) ) ⊆ 𝑤 ) ) |
| 129 | 118 121 122 128 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑏 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) ∧ ( ( cls ‘ 𝐾 ) ‘ 𝑏 ) ⊆ 𝑤 ) → ( ∃ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ( 𝐹 “ 𝑢 ) ⊆ 𝑏 → ∃ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑢 ) ) ⊆ 𝑤 ) ) |
| 130 | 129 | adantllr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) ∧ 𝑏 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) ∧ ( ( cls ‘ 𝐾 ) ‘ 𝑏 ) ⊆ 𝑤 ) → ( ∃ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ( 𝐹 “ 𝑢 ) ⊆ 𝑏 → ∃ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑢 ) ) ⊆ 𝑤 ) ) |
| 131 | 117 130 | mpd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) ∧ 𝑏 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) ∧ ( ( cls ‘ 𝐾 ) ‘ 𝑏 ) ⊆ 𝑤 ) → ∃ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑢 ) ) ⊆ 𝑤 ) |
| 132 | 41 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) → 𝐾 ∈ Top ) |
| 133 | 9 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) → 𝐾 ∈ Reg ) |
| 134 | 133 | ad2antrr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) ∧ 𝑐 ∈ 𝐾 ) ∧ ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑐 ∧ 𝑐 ⊆ 𝑤 ) ) → 𝐾 ∈ Reg ) |
| 135 | simplr | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) ∧ 𝑐 ∈ 𝐾 ) ∧ ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑐 ∧ 𝑐 ⊆ 𝑤 ) ) → 𝑐 ∈ 𝐾 ) | |
| 136 | simprl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) ∧ 𝑐 ∈ 𝐾 ) ∧ ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑐 ∧ 𝑐 ⊆ 𝑤 ) ) → ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑐 ) | |
| 137 | regsep | ⊢ ( ( 𝐾 ∈ Reg ∧ 𝑐 ∈ 𝐾 ∧ ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑐 ) → ∃ 𝑏 ∈ 𝐾 ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑏 ∧ ( ( cls ‘ 𝐾 ) ‘ 𝑏 ) ⊆ 𝑐 ) ) | |
| 138 | 134 135 136 137 | syl3anc | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) ∧ 𝑐 ∈ 𝐾 ) ∧ ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑐 ∧ 𝑐 ⊆ 𝑤 ) ) → ∃ 𝑏 ∈ 𝐾 ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑏 ∧ ( ( cls ‘ 𝐾 ) ‘ 𝑏 ) ⊆ 𝑐 ) ) |
| 139 | sstr | ⊢ ( ( ( ( cls ‘ 𝐾 ) ‘ 𝑏 ) ⊆ 𝑐 ∧ 𝑐 ⊆ 𝑤 ) → ( ( cls ‘ 𝐾 ) ‘ 𝑏 ) ⊆ 𝑤 ) | |
| 140 | 139 | expcom | ⊢ ( 𝑐 ⊆ 𝑤 → ( ( ( cls ‘ 𝐾 ) ‘ 𝑏 ) ⊆ 𝑐 → ( ( cls ‘ 𝐾 ) ‘ 𝑏 ) ⊆ 𝑤 ) ) |
| 141 | 140 | anim2d | ⊢ ( 𝑐 ⊆ 𝑤 → ( ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑏 ∧ ( ( cls ‘ 𝐾 ) ‘ 𝑏 ) ⊆ 𝑐 ) → ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑏 ∧ ( ( cls ‘ 𝐾 ) ‘ 𝑏 ) ⊆ 𝑤 ) ) ) |
| 142 | 141 | reximdv | ⊢ ( 𝑐 ⊆ 𝑤 → ( ∃ 𝑏 ∈ 𝐾 ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑏 ∧ ( ( cls ‘ 𝐾 ) ‘ 𝑏 ) ⊆ 𝑐 ) → ∃ 𝑏 ∈ 𝐾 ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑏 ∧ ( ( cls ‘ 𝐾 ) ‘ 𝑏 ) ⊆ 𝑤 ) ) ) |
| 143 | 142 | ad2antll | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) ∧ 𝑐 ∈ 𝐾 ) ∧ ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑐 ∧ 𝑐 ⊆ 𝑤 ) ) → ( ∃ 𝑏 ∈ 𝐾 ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑏 ∧ ( ( cls ‘ 𝐾 ) ‘ 𝑏 ) ⊆ 𝑐 ) → ∃ 𝑏 ∈ 𝐾 ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑏 ∧ ( ( cls ‘ 𝐾 ) ‘ 𝑏 ) ⊆ 𝑤 ) ) ) |
| 144 | 138 143 | mpd | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) ∧ 𝑐 ∈ 𝐾 ) ∧ ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑐 ∧ 𝑐 ⊆ 𝑤 ) ) → ∃ 𝑏 ∈ 𝐾 ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑏 ∧ ( ( cls ‘ 𝐾 ) ‘ 𝑏 ) ⊆ 𝑤 ) ) |
| 145 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) → 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) | |
| 146 | neii2 | ⊢ ( ( 𝐾 ∈ Top ∧ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) → ∃ 𝑐 ∈ 𝐾 ( { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ⊆ 𝑐 ∧ 𝑐 ⊆ 𝑤 ) ) | |
| 147 | fvex | ⊢ ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) ∈ V | |
| 148 | 147 | snss | ⊢ ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑐 ↔ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ⊆ 𝑐 ) |
| 149 | 148 | anbi1i | ⊢ ( ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑐 ∧ 𝑐 ⊆ 𝑤 ) ↔ ( { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ⊆ 𝑐 ∧ 𝑐 ⊆ 𝑤 ) ) |
| 150 | 149 | biimpri | ⊢ ( ( { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ⊆ 𝑐 ∧ 𝑐 ⊆ 𝑤 ) → ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑐 ∧ 𝑐 ⊆ 𝑤 ) ) |
| 151 | 150 | reximi | ⊢ ( ∃ 𝑐 ∈ 𝐾 ( { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ⊆ 𝑐 ∧ 𝑐 ⊆ 𝑤 ) → ∃ 𝑐 ∈ 𝐾 ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑐 ∧ 𝑐 ⊆ 𝑤 ) ) |
| 152 | 146 151 | syl | ⊢ ( ( 𝐾 ∈ Top ∧ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) → ∃ 𝑐 ∈ 𝐾 ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑐 ∧ 𝑐 ⊆ 𝑤 ) ) |
| 153 | 132 145 152 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) → ∃ 𝑐 ∈ 𝐾 ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑐 ∧ 𝑐 ⊆ 𝑤 ) ) |
| 154 | 144 153 | r19.29a | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) → ∃ 𝑏 ∈ 𝐾 ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑏 ∧ ( ( cls ‘ 𝐾 ) ‘ 𝑏 ) ⊆ 𝑤 ) ) |
| 155 | anass | ⊢ ( ( ( 𝑏 ∈ 𝐾 ∧ ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑏 ) ∧ ( ( cls ‘ 𝐾 ) ‘ 𝑏 ) ⊆ 𝑤 ) ↔ ( 𝑏 ∈ 𝐾 ∧ ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑏 ∧ ( ( cls ‘ 𝐾 ) ‘ 𝑏 ) ⊆ 𝑤 ) ) ) | |
| 156 | opnneip | ⊢ ( ( 𝐾 ∈ Top ∧ 𝑏 ∈ 𝐾 ∧ ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑏 ) → 𝑏 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) | |
| 157 | 156 | 3expib | ⊢ ( 𝐾 ∈ Top → ( ( 𝑏 ∈ 𝐾 ∧ ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑏 ) → 𝑏 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) ) |
| 158 | 157 | anim1d | ⊢ ( 𝐾 ∈ Top → ( ( ( 𝑏 ∈ 𝐾 ∧ ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑏 ) ∧ ( ( cls ‘ 𝐾 ) ‘ 𝑏 ) ⊆ 𝑤 ) → ( 𝑏 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ∧ ( ( cls ‘ 𝐾 ) ‘ 𝑏 ) ⊆ 𝑤 ) ) ) |
| 159 | 155 158 | biimtrrid | ⊢ ( 𝐾 ∈ Top → ( ( 𝑏 ∈ 𝐾 ∧ ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑏 ∧ ( ( cls ‘ 𝐾 ) ‘ 𝑏 ) ⊆ 𝑤 ) ) → ( 𝑏 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ∧ ( ( cls ‘ 𝐾 ) ‘ 𝑏 ) ⊆ 𝑤 ) ) ) |
| 160 | 159 | reximdv2 | ⊢ ( 𝐾 ∈ Top → ( ∃ 𝑏 ∈ 𝐾 ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) ∈ 𝑏 ∧ ( ( cls ‘ 𝐾 ) ‘ 𝑏 ) ⊆ 𝑤 ) → ∃ 𝑏 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ( ( cls ‘ 𝐾 ) ‘ 𝑏 ) ⊆ 𝑤 ) ) |
| 161 | 132 154 160 | sylc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) → ∃ 𝑏 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ( ( cls ‘ 𝐾 ) ‘ 𝑏 ) ⊆ 𝑤 ) |
| 162 | 131 161 | r19.29a | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) → ∃ 𝑢 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ 𝑢 ) ) ⊆ 𝑤 ) |
| 163 | 78 162 | r19.29a | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) → ∃ 𝑑 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑑 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) |
| 164 | 60 163 | r19.29a | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) → ∃ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝑣 ∈ 𝐽 ∧ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑣 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) ) |
| 165 | simplr | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ) ∧ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑣 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) ∧ 𝑧 ∈ 𝑣 ) → ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑣 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) | |
| 166 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑧 ∈ 𝑣 ) → 𝜑 ) | |
| 167 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑧 ∈ 𝑣 ) → 𝐽 ∈ Top ) |
| 168 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑧 ∈ 𝑣 ) → 𝑣 ∈ 𝐽 ) | |
| 169 | 1 | eltopss | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑣 ∈ 𝐽 ) → 𝑣 ⊆ 𝐶 ) |
| 170 | 167 168 169 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑧 ∈ 𝑣 ) → 𝑣 ⊆ 𝐶 ) |
| 171 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑧 ∈ 𝑣 ) → 𝑧 ∈ 𝑣 ) | |
| 172 | 170 171 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑧 ∈ 𝑣 ) → 𝑧 ∈ 𝐶 ) |
| 173 | fvexd | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑧 ∈ 𝑣 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ∈ V ) | |
| 174 | 73 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑧 ∈ 𝑣 ) → 𝐴 ∈ V ) |
| 175 | opnneip | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑣 ∈ 𝐽 ∧ 𝑧 ∈ 𝑣 ) → 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ) | |
| 176 | 3 175 | syl3an1 | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ∧ 𝑧 ∈ 𝑣 ) → 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ) |
| 177 | 176 | 3expa | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑧 ∈ 𝑣 ) → 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ) |
| 178 | elrestr | ⊢ ( ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ∈ V ∧ 𝐴 ∈ V ∧ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ) → ( 𝑣 ∩ 𝐴 ) ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) | |
| 179 | 173 174 177 178 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑧 ∈ 𝑣 ) → ( 𝑣 ∩ 𝐴 ) ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) |
| 180 | 1 2 3 4 5 6 7 8 | cnextfvval | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑧 ) = ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) |
| 181 | 180 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑣 ∩ 𝐴 ) ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) → ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑧 ) = ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) |
| 182 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → 𝐾 ∈ Haus ) |
| 183 | 7 | eleq2d | ⊢ ( 𝜑 → ( 𝑧 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ 𝑧 ∈ 𝐶 ) ) |
| 184 | 183 | biimpar | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → 𝑧 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) |
| 185 | 71 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → 𝐽 ∈ ( TopOn ‘ 𝐶 ) ) |
| 186 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → 𝐴 ⊆ 𝐶 ) |
| 187 | simpr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → 𝑧 ∈ 𝐶 ) | |
| 188 | trnei | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝐶 ) ∧ 𝐴 ⊆ 𝐶 ∧ 𝑧 ∈ 𝐶 ) → ( 𝑧 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ) ) | |
| 189 | 185 186 187 188 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → ( 𝑧 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ) ) |
| 190 | 184 189 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ) |
| 191 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 192 | eleq1w | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝐶 ↔ 𝑧 ∈ 𝐶 ) ) | |
| 193 | 192 | anbi2d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ↔ ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) ) ) |
| 194 | sneq | ⊢ ( 𝑥 = 𝑧 → { 𝑥 } = { 𝑧 } ) | |
| 195 | 194 | fveq2d | ⊢ ( 𝑥 = 𝑧 → ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) = ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ) |
| 196 | 195 | oveq1d | ⊢ ( 𝑥 = 𝑧 → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) = ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) |
| 197 | 196 | oveq2d | ⊢ ( 𝑥 = 𝑧 → ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) = ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) ) |
| 198 | 197 | fveq1d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) = ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) |
| 199 | 198 | neeq1d | ⊢ ( 𝑥 = 𝑧 → ( ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ↔ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ) ) |
| 200 | 193 199 | imbi12d | ⊢ ( 𝑥 = 𝑧 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ) ↔ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ) ) ) |
| 201 | 200 8 | chvarvv | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ) |
| 202 | 2 | hausflf2 | ⊢ ( ( ( 𝐾 ∈ Haus ∧ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≈ 1o ) |
| 203 | 182 190 191 201 202 | syl31anc | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≈ 1o ) |
| 204 | en1b | ⊢ ( ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≈ 1o ↔ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) = { ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) } ) | |
| 205 | 203 204 | sylib | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) = { ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) } ) |
| 206 | 205 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑣 ∩ 𝐴 ) ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) = { ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) } ) |
| 207 | 110 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → 𝐾 ∈ ( TopOn ‘ 𝐵 ) ) |
| 208 | flfval | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝐵 ) ∧ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) = ( 𝐾 fLim ( ( 𝐵 FilMap 𝐹 ) ‘ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) ) ) | |
| 209 | 207 190 191 208 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) = ( 𝐾 fLim ( ( 𝐵 FilMap 𝐹 ) ‘ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) ) ) |
| 210 | 209 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑣 ∩ 𝐴 ) ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) = ( 𝐾 fLim ( ( 𝐵 FilMap 𝐹 ) ‘ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) ) ) |
| 211 | 4 | uniexd | ⊢ ( 𝜑 → ∪ 𝐾 ∈ V ) |
| 212 | 211 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑣 ∩ 𝐴 ) ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) → ∪ 𝐾 ∈ V ) |
| 213 | 2 212 | eqeltrid | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑣 ∩ 𝐴 ) ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) → 𝐵 ∈ V ) |
| 214 | 190 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑣 ∩ 𝐴 ) ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ) |
| 215 | filfbas | ⊢ ( ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ) | |
| 216 | 214 215 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑣 ∩ 𝐴 ) ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ) |
| 217 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑣 ∩ 𝐴 ) ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 218 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑣 ∩ 𝐴 ) ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) → ( 𝑣 ∩ 𝐴 ) ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) | |
| 219 | fgfil | ⊢ ( ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) → ( 𝐴 filGen ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) = ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) | |
| 220 | 190 219 | syl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) → ( 𝐴 filGen ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) = ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) |
| 221 | 220 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑣 ∩ 𝐴 ) ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) → ( 𝐴 filGen ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) = ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) |
| 222 | 218 221 | eleqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑣 ∩ 𝐴 ) ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) → ( 𝑣 ∩ 𝐴 ) ∈ ( 𝐴 filGen ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) ) |
| 223 | eqid | ⊢ ( 𝐴 filGen ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) = ( 𝐴 filGen ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) | |
| 224 | 223 | imaelfm | ⊢ ( ( ( 𝐵 ∈ V ∧ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ∈ ( fBas ‘ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ ( 𝑣 ∩ 𝐴 ) ∈ ( 𝐴 filGen ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) ) → ( 𝐹 “ ( 𝑣 ∩ 𝐴 ) ) ∈ ( ( 𝐵 FilMap 𝐹 ) ‘ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) ) |
| 225 | 213 216 217 222 224 | syl31anc | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑣 ∩ 𝐴 ) ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) → ( 𝐹 “ ( 𝑣 ∩ 𝐴 ) ) ∈ ( ( 𝐵 FilMap 𝐹 ) ‘ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) ) |
| 226 | flimclsi | ⊢ ( ( 𝐹 “ ( 𝑣 ∩ 𝐴 ) ) ∈ ( ( 𝐵 FilMap 𝐹 ) ‘ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) → ( 𝐾 fLim ( ( 𝐵 FilMap 𝐹 ) ‘ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑣 ∩ 𝐴 ) ) ) ) | |
| 227 | 225 226 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑣 ∩ 𝐴 ) ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) → ( 𝐾 fLim ( ( 𝐵 FilMap 𝐹 ) ‘ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑣 ∩ 𝐴 ) ) ) ) |
| 228 | 210 227 | eqsstrd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑣 ∩ 𝐴 ) ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑣 ∩ 𝐴 ) ) ) ) |
| 229 | 206 228 | eqsstrrd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑣 ∩ 𝐴 ) ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) → { ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) } ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑣 ∩ 𝐴 ) ) ) ) |
| 230 | fvex | ⊢ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ∈ V | |
| 231 | 230 | uniex | ⊢ ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ∈ V |
| 232 | 231 | snss | ⊢ ( ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ∈ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑣 ∩ 𝐴 ) ) ) ↔ { ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) } ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑣 ∩ 𝐴 ) ) ) ) |
| 233 | 229 232 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑣 ∩ 𝐴 ) ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) → ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ∈ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑣 ∩ 𝐴 ) ) ) ) |
| 234 | 181 233 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ 𝐶 ) ∧ ( 𝑣 ∩ 𝐴 ) ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑧 } ) ↾t 𝐴 ) ) → ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑧 ) ∈ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑣 ∩ 𝐴 ) ) ) ) |
| 235 | 166 172 179 234 | syl21anc | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ) ∧ 𝑧 ∈ 𝑣 ) → ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑧 ) ∈ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑣 ∩ 𝐴 ) ) ) ) |
| 236 | 235 | adantlr | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ) ∧ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑣 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) ∧ 𝑧 ∈ 𝑣 ) → ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑧 ) ∈ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑣 ∩ 𝐴 ) ) ) ) |
| 237 | 165 236 | sseldd | ⊢ ( ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ) ∧ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑣 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) ∧ 𝑧 ∈ 𝑣 ) → ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑤 ) |
| 238 | 237 | ralrimiva | ⊢ ( ( ( 𝜑 ∧ 𝑣 ∈ 𝐽 ) ∧ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑣 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) → ∀ 𝑧 ∈ 𝑣 ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑤 ) |
| 239 | 238 | expl | ⊢ ( 𝜑 → ( ( 𝑣 ∈ 𝐽 ∧ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑣 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) → ∀ 𝑧 ∈ 𝑣 ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑤 ) ) |
| 240 | 239 | reximdv | ⊢ ( 𝜑 → ( ∃ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝑣 ∈ 𝐽 ∧ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑣 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) → ∃ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ∀ 𝑧 ∈ 𝑣 ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑤 ) ) |
| 241 | 240 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) → ( ∃ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝑣 ∈ 𝐽 ∧ ( ( cls ‘ 𝐾 ) ‘ ( 𝐹 “ ( 𝑣 ∩ 𝐴 ) ) ) ⊆ 𝑤 ) → ∃ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ∀ 𝑧 ∈ 𝑣 ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑤 ) ) |
| 242 | 164 241 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) → ∃ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ∀ 𝑧 ∈ 𝑣 ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑤 ) |
| 243 | 1 2 3 4 5 6 7 8 | cnextf | ⊢ ( 𝜑 → ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) : 𝐶 ⟶ 𝐵 ) |
| 244 | 243 | ffund | ⊢ ( 𝜑 → Fun ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ) |
| 245 | 244 | adantr | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) → Fun ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ) |
| 246 | 1 | neii1 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) → 𝑣 ⊆ 𝐶 ) |
| 247 | 3 246 | sylan | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) → 𝑣 ⊆ 𝐶 ) |
| 248 | 243 | fdmd | ⊢ ( 𝜑 → dom ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) = 𝐶 ) |
| 249 | 248 | adantr | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) → dom ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) = 𝐶 ) |
| 250 | 247 249 | sseqtrrd | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) → 𝑣 ⊆ dom ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ) |
| 251 | funimass4 | ⊢ ( ( Fun ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ∧ 𝑣 ⊆ dom ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ) → ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) “ 𝑣 ) ⊆ 𝑤 ↔ ∀ 𝑧 ∈ 𝑣 ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑤 ) ) | |
| 252 | 245 250 251 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) → ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) “ 𝑣 ) ⊆ 𝑤 ↔ ∀ 𝑧 ∈ 𝑣 ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑤 ) ) |
| 253 | 252 | biimprd | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) → ( ∀ 𝑧 ∈ 𝑣 ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑤 → ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) “ 𝑣 ) ⊆ 𝑤 ) ) |
| 254 | 253 | reximdva | ⊢ ( 𝜑 → ( ∃ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ∀ 𝑧 ∈ 𝑣 ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑧 ) ∈ 𝑤 → ∃ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) “ 𝑣 ) ⊆ 𝑤 ) ) |
| 255 | 10 242 254 | sylc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ) → ∃ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) “ 𝑣 ) ⊆ 𝑤 ) |
| 256 | 255 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ∀ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ∃ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) “ 𝑣 ) ⊆ 𝑤 ) |
| 257 | 256 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐶 ∀ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ∃ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) “ 𝑣 ) ⊆ 𝑤 ) |
| 258 | 1 2 | cnnei | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) : 𝐶 ⟶ 𝐵 ) → ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ∈ ( 𝐽 Cn 𝐾 ) ↔ ∀ 𝑥 ∈ 𝐶 ∀ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ∃ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) “ 𝑣 ) ⊆ 𝑤 ) ) |
| 259 | 3 41 243 258 | syl3anc | ⊢ ( 𝜑 → ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ∈ ( 𝐽 Cn 𝐾 ) ↔ ∀ 𝑥 ∈ 𝐶 ∀ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑥 ) } ) ∃ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) “ 𝑣 ) ⊆ 𝑤 ) ) |
| 260 | 257 259 | mpbird | ⊢ ( 𝜑 → ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ∈ ( 𝐽 Cn 𝐾 ) ) |