This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Continuity in terms of neighborhoods. (Contributed by Thierry Arnoux, 3-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnnei.x | ⊢ 𝑋 = ∪ 𝐽 | |
| cnnei.y | ⊢ 𝑌 = ∪ 𝐾 | ||
| Assertion | cnnei | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ∀ 𝑝 ∈ 𝑋 ∀ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝑝 ) } ) ∃ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) ( 𝐹 “ 𝑣 ) ⊆ 𝑤 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnnei.x | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | cnnei.y | ⊢ 𝑌 = ∪ 𝐾 | |
| 3 | 1 | toptopon | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 4 | 2 | toptopon | ⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 5 | 3 4 | anbi12i | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ↔ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ) |
| 6 | cncnp | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑝 ∈ 𝑋 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑝 ) ) ) ) | |
| 7 | 6 | baibd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ∀ 𝑝 ∈ 𝑋 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑝 ) ) ) |
| 8 | 5 7 | sylanb | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ∀ 𝑝 ∈ 𝑋 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑝 ) ) ) |
| 9 | 5 | anbi1i | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ↔ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ) |
| 10 | iscnp4 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑝 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑝 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝑝 ) } ) ∃ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) ( 𝐹 “ 𝑣 ) ⊆ 𝑤 ) ) ) | |
| 11 | 10 | 3expa | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑝 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑝 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝑝 ) } ) ∃ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) ( 𝐹 “ 𝑣 ) ⊆ 𝑤 ) ) ) |
| 12 | 11 | baibd | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝑝 ∈ 𝑋 ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑝 ) ↔ ∀ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝑝 ) } ) ∃ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) ( 𝐹 “ 𝑣 ) ⊆ 𝑤 ) ) |
| 13 | 12 | an32s | ⊢ ( ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑝 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑝 ) ↔ ∀ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝑝 ) } ) ∃ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) ( 𝐹 “ 𝑣 ) ⊆ 𝑤 ) ) |
| 14 | 9 13 | sylanb | ⊢ ( ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ 𝑝 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑝 ) ↔ ∀ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝑝 ) } ) ∃ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) ( 𝐹 “ 𝑣 ) ⊆ 𝑤 ) ) |
| 15 | 14 | ralbidva | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑝 ∈ 𝑋 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑝 ) ↔ ∀ 𝑝 ∈ 𝑋 ∀ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝑝 ) } ) ∃ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) ( 𝐹 “ 𝑣 ) ⊆ 𝑤 ) ) |
| 16 | 8 15 | bitrd | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ∀ 𝑝 ∈ 𝑋 ∀ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝑝 ) } ) ∃ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) ( 𝐹 “ 𝑣 ) ⊆ 𝑤 ) ) |
| 17 | 16 | 3impa | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ∀ 𝑝 ∈ 𝑋 ∀ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝑝 ) } ) ∃ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑝 } ) ( 𝐹 “ 𝑣 ) ⊆ 𝑤 ) ) |