This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Mario Carneiro, 17-Jan-2015) Avoid ax-un . (Revised by BTernaryTau, 24-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | en1b | ⊢ ( 𝐴 ≈ 1o ↔ 𝐴 = { ∪ 𝐴 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en1 | ⊢ ( 𝐴 ≈ 1o ↔ ∃ 𝑥 𝐴 = { 𝑥 } ) | |
| 2 | id | ⊢ ( 𝐴 = { 𝑥 } → 𝐴 = { 𝑥 } ) | |
| 3 | unieq | ⊢ ( 𝐴 = { 𝑥 } → ∪ 𝐴 = ∪ { 𝑥 } ) | |
| 4 | unisnv | ⊢ ∪ { 𝑥 } = 𝑥 | |
| 5 | 3 4 | eqtrdi | ⊢ ( 𝐴 = { 𝑥 } → ∪ 𝐴 = 𝑥 ) |
| 6 | 5 | sneqd | ⊢ ( 𝐴 = { 𝑥 } → { ∪ 𝐴 } = { 𝑥 } ) |
| 7 | 2 6 | eqtr4d | ⊢ ( 𝐴 = { 𝑥 } → 𝐴 = { ∪ 𝐴 } ) |
| 8 | 7 | exlimiv | ⊢ ( ∃ 𝑥 𝐴 = { 𝑥 } → 𝐴 = { ∪ 𝐴 } ) |
| 9 | 1 8 | sylbi | ⊢ ( 𝐴 ≈ 1o → 𝐴 = { ∪ 𝐴 } ) |
| 10 | id | ⊢ ( 𝐴 = { ∪ 𝐴 } → 𝐴 = { ∪ 𝐴 } ) | |
| 11 | eqsnuniex | ⊢ ( 𝐴 = { ∪ 𝐴 } → ∪ 𝐴 ∈ V ) | |
| 12 | ensn1g | ⊢ ( ∪ 𝐴 ∈ V → { ∪ 𝐴 } ≈ 1o ) | |
| 13 | 11 12 | syl | ⊢ ( 𝐴 = { ∪ 𝐴 } → { ∪ 𝐴 } ≈ 1o ) |
| 14 | 10 13 | eqbrtrd | ⊢ ( 𝐴 = { ∪ 𝐴 } → 𝐴 ≈ 1o ) |
| 15 | 9 14 | impbii | ⊢ ( 𝐴 ≈ 1o ↔ 𝐴 = { ∪ 𝐴 } ) |