This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset relationship for closure. (Contributed by NM, 10-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | clsss | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | sstr2 | ⊢ ( 𝑇 ⊆ 𝑆 → ( 𝑆 ⊆ 𝑥 → 𝑇 ⊆ 𝑥 ) ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝑇 ⊆ 𝑆 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ( 𝑆 ⊆ 𝑥 → 𝑇 ⊆ 𝑥 ) ) |
| 4 | 3 | ss2rabdv | ⊢ ( 𝑇 ⊆ 𝑆 → { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ⊆ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑇 ⊆ 𝑥 } ) |
| 5 | intss | ⊢ ( { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ⊆ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑇 ⊆ 𝑥 } → ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑇 ⊆ 𝑥 } ⊆ ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑇 ⊆ 𝑆 → ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑇 ⊆ 𝑥 } ⊆ ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ) |
| 7 | 6 | 3ad2ant3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑇 ⊆ 𝑥 } ⊆ ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ) |
| 8 | simp1 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → 𝐽 ∈ Top ) | |
| 9 | sstr2 | ⊢ ( 𝑇 ⊆ 𝑆 → ( 𝑆 ⊆ 𝑋 → 𝑇 ⊆ 𝑋 ) ) | |
| 10 | 9 | impcom | ⊢ ( ( 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → 𝑇 ⊆ 𝑋 ) |
| 11 | 10 | 3adant1 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → 𝑇 ⊆ 𝑋 ) |
| 12 | 1 | clsval | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑇 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) = ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑇 ⊆ 𝑥 } ) |
| 13 | 8 11 12 | syl2anc | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) = ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑇 ⊆ 𝑥 } ) |
| 14 | 1 | clsval | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ) |
| 15 | 14 | 3adant3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ) |
| 16 | 7 13 15 | 3sstr4d | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ∧ 𝑇 ⊆ 𝑆 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑇 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |