This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Given a function from a filtered set to a topological space, define the set of limit points of the function. (Contributed by Jeff Hankins, 8-Nov-2009) (Revised by Stefan O'Rear, 6-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flfval | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) = ( 𝐽 fLim ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | toponmax | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) | |
| 2 | filtop | ⊢ ( 𝐿 ∈ ( Fil ‘ 𝑌 ) → 𝑌 ∈ 𝐿 ) | |
| 3 | elmapg | ⊢ ( ( 𝑋 ∈ 𝐽 ∧ 𝑌 ∈ 𝐿 ) → ( 𝐹 ∈ ( 𝑋 ↑m 𝑌 ) ↔ 𝐹 : 𝑌 ⟶ 𝑋 ) ) | |
| 4 | 1 2 3 | syl2an | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝑋 ↑m 𝑌 ) ↔ 𝐹 : 𝑌 ⟶ 𝑋 ) ) |
| 5 | 4 | biimpar | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → 𝐹 ∈ ( 𝑋 ↑m 𝑌 ) ) |
| 6 | flffval | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) → ( 𝐽 fLimf 𝐿 ) = ( 𝑓 ∈ ( 𝑋 ↑m 𝑌 ) ↦ ( 𝐽 fLim ( ( 𝑋 FilMap 𝑓 ) ‘ 𝐿 ) ) ) ) | |
| 7 | 6 | fveq1d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) → ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) = ( ( 𝑓 ∈ ( 𝑋 ↑m 𝑌 ) ↦ ( 𝐽 fLim ( ( 𝑋 FilMap 𝑓 ) ‘ 𝐿 ) ) ) ‘ 𝐹 ) ) |
| 8 | oveq2 | ⊢ ( 𝑓 = 𝐹 → ( 𝑋 FilMap 𝑓 ) = ( 𝑋 FilMap 𝐹 ) ) | |
| 9 | 8 | fveq1d | ⊢ ( 𝑓 = 𝐹 → ( ( 𝑋 FilMap 𝑓 ) ‘ 𝐿 ) = ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) |
| 10 | 9 | oveq2d | ⊢ ( 𝑓 = 𝐹 → ( 𝐽 fLim ( ( 𝑋 FilMap 𝑓 ) ‘ 𝐿 ) ) = ( 𝐽 fLim ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ) |
| 11 | eqid | ⊢ ( 𝑓 ∈ ( 𝑋 ↑m 𝑌 ) ↦ ( 𝐽 fLim ( ( 𝑋 FilMap 𝑓 ) ‘ 𝐿 ) ) ) = ( 𝑓 ∈ ( 𝑋 ↑m 𝑌 ) ↦ ( 𝐽 fLim ( ( 𝑋 FilMap 𝑓 ) ‘ 𝐿 ) ) ) | |
| 12 | ovex | ⊢ ( 𝐽 fLim ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ∈ V | |
| 13 | 10 11 12 | fvmpt | ⊢ ( 𝐹 ∈ ( 𝑋 ↑m 𝑌 ) → ( ( 𝑓 ∈ ( 𝑋 ↑m 𝑌 ) ↦ ( 𝐽 fLim ( ( 𝑋 FilMap 𝑓 ) ‘ 𝐿 ) ) ) ‘ 𝐹 ) = ( 𝐽 fLim ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ) |
| 14 | 7 13 | sylan9eq | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) ∧ 𝐹 ∈ ( 𝑋 ↑m 𝑌 ) ) → ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) = ( 𝐽 fLim ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ) |
| 15 | 5 14 | syldan | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) = ( 𝐽 fLim ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ) |
| 16 | 15 | 3impa | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) = ( 𝐽 fLim ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ) |