This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extension by continuity. Theorem 1 of BourbakiTop1 p. I.57. Given a topology J on C , a subset A dense in C , this states a condition for F from A to a regular space K to be extensible by continuity. (Contributed by Thierry Arnoux, 1-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnextf.1 | |- C = U. J |
|
| cnextf.2 | |- B = U. K |
||
| cnextf.3 | |- ( ph -> J e. Top ) |
||
| cnextf.4 | |- ( ph -> K e. Haus ) |
||
| cnextf.5 | |- ( ph -> F : A --> B ) |
||
| cnextf.a | |- ( ph -> A C_ C ) |
||
| cnextf.6 | |- ( ph -> ( ( cls ` J ) ` A ) = C ) |
||
| cnextf.7 | |- ( ( ph /\ x e. C ) -> ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) =/= (/) ) |
||
| cnextcn.8 | |- ( ph -> K e. Reg ) |
||
| Assertion | cnextcn | |- ( ph -> ( ( J CnExt K ) ` F ) e. ( J Cn K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnextf.1 | |- C = U. J |
|
| 2 | cnextf.2 | |- B = U. K |
|
| 3 | cnextf.3 | |- ( ph -> J e. Top ) |
|
| 4 | cnextf.4 | |- ( ph -> K e. Haus ) |
|
| 5 | cnextf.5 | |- ( ph -> F : A --> B ) |
|
| 6 | cnextf.a | |- ( ph -> A C_ C ) |
|
| 7 | cnextf.6 | |- ( ph -> ( ( cls ` J ) ` A ) = C ) |
|
| 8 | cnextf.7 | |- ( ( ph /\ x e. C ) -> ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) =/= (/) ) |
|
| 9 | cnextcn.8 | |- ( ph -> K e. Reg ) |
|
| 10 | simpll | |- ( ( ( ph /\ x e. C ) /\ w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) -> ph ) |
|
| 11 | simpll | |- ( ( ( ph /\ x e. C ) /\ ( w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) /\ d e. ( ( nei ` J ) ` { x } ) /\ ( ( cls ` K ) ` ( F " ( d i^i A ) ) ) C_ w ) ) -> ph ) |
|
| 12 | simpr3 | |- ( ( ( ph /\ x e. C ) /\ ( w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) /\ d e. ( ( nei ` J ) ` { x } ) /\ ( ( cls ` K ) ` ( F " ( d i^i A ) ) ) C_ w ) ) -> ( ( cls ` K ) ` ( F " ( d i^i A ) ) ) C_ w ) |
|
| 13 | 3 | ad2antrr | |- ( ( ( ph /\ x e. C ) /\ ( w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) /\ d e. ( ( nei ` J ) ` { x } ) /\ ( ( cls ` K ) ` ( F " ( d i^i A ) ) ) C_ w ) ) -> J e. Top ) |
| 14 | simpr2 | |- ( ( ( ph /\ x e. C ) /\ ( w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) /\ d e. ( ( nei ` J ) ` { x } ) /\ ( ( cls ` K ) ` ( F " ( d i^i A ) ) ) C_ w ) ) -> d e. ( ( nei ` J ) ` { x } ) ) |
|
| 15 | neii2 | |- ( ( J e. Top /\ d e. ( ( nei ` J ) ` { x } ) ) -> E. v e. J ( { x } C_ v /\ v C_ d ) ) |
|
| 16 | 13 14 15 | syl2anc | |- ( ( ( ph /\ x e. C ) /\ ( w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) /\ d e. ( ( nei ` J ) ` { x } ) /\ ( ( cls ` K ) ` ( F " ( d i^i A ) ) ) C_ w ) ) -> E. v e. J ( { x } C_ v /\ v C_ d ) ) |
| 17 | vex | |- x e. _V |
|
| 18 | 17 | snss | |- ( x e. v <-> { x } C_ v ) |
| 19 | 18 | biimpri | |- ( { x } C_ v -> x e. v ) |
| 20 | 19 | anim1i | |- ( ( { x } C_ v /\ v C_ d ) -> ( x e. v /\ v C_ d ) ) |
| 21 | 20 | anim2i | |- ( ( v e. J /\ ( { x } C_ v /\ v C_ d ) ) -> ( v e. J /\ ( x e. v /\ v C_ d ) ) ) |
| 22 | 21 | anim2i | |- ( ( ph /\ ( v e. J /\ ( { x } C_ v /\ v C_ d ) ) ) -> ( ph /\ ( v e. J /\ ( x e. v /\ v C_ d ) ) ) ) |
| 23 | 22 | ex | |- ( ph -> ( ( v e. J /\ ( { x } C_ v /\ v C_ d ) ) -> ( ph /\ ( v e. J /\ ( x e. v /\ v C_ d ) ) ) ) ) |
| 24 | 3anass | |- ( ( ph /\ v e. J /\ x e. v ) <-> ( ph /\ ( v e. J /\ x e. v ) ) ) |
|
| 25 | 24 | anbi1i | |- ( ( ( ph /\ v e. J /\ x e. v ) /\ v C_ d ) <-> ( ( ph /\ ( v e. J /\ x e. v ) ) /\ v C_ d ) ) |
| 26 | anass | |- ( ( ( ph /\ ( v e. J /\ x e. v ) ) /\ v C_ d ) <-> ( ph /\ ( ( v e. J /\ x e. v ) /\ v C_ d ) ) ) |
|
| 27 | anass | |- ( ( ( v e. J /\ x e. v ) /\ v C_ d ) <-> ( v e. J /\ ( x e. v /\ v C_ d ) ) ) |
|
| 28 | 27 | anbi2i | |- ( ( ph /\ ( ( v e. J /\ x e. v ) /\ v C_ d ) ) <-> ( ph /\ ( v e. J /\ ( x e. v /\ v C_ d ) ) ) ) |
| 29 | 25 26 28 | 3bitri | |- ( ( ( ph /\ v e. J /\ x e. v ) /\ v C_ d ) <-> ( ph /\ ( v e. J /\ ( x e. v /\ v C_ d ) ) ) ) |
| 30 | opnneip | |- ( ( J e. Top /\ v e. J /\ x e. v ) -> v e. ( ( nei ` J ) ` { x } ) ) |
|
| 31 | 3 30 | syl3an1 | |- ( ( ph /\ v e. J /\ x e. v ) -> v e. ( ( nei ` J ) ` { x } ) ) |
| 32 | 31 | adantr | |- ( ( ( ph /\ v e. J /\ x e. v ) /\ v C_ d ) -> v e. ( ( nei ` J ) ` { x } ) ) |
| 33 | simpr2 | |- ( ( v C_ d /\ ( ph /\ v e. J /\ x e. v ) ) -> v e. J ) |
|
| 34 | 33 | ex | |- ( v C_ d -> ( ( ph /\ v e. J /\ x e. v ) -> v e. J ) ) |
| 35 | 34 | imdistanri | |- ( ( ( ph /\ v e. J /\ x e. v ) /\ v C_ d ) -> ( v e. J /\ v C_ d ) ) |
| 36 | 32 35 | jca | |- ( ( ( ph /\ v e. J /\ x e. v ) /\ v C_ d ) -> ( v e. ( ( nei ` J ) ` { x } ) /\ ( v e. J /\ v C_ d ) ) ) |
| 37 | 29 36 | sylbir | |- ( ( ph /\ ( v e. J /\ ( x e. v /\ v C_ d ) ) ) -> ( v e. ( ( nei ` J ) ` { x } ) /\ ( v e. J /\ v C_ d ) ) ) |
| 38 | 23 37 | syl6 | |- ( ph -> ( ( v e. J /\ ( { x } C_ v /\ v C_ d ) ) -> ( v e. ( ( nei ` J ) ` { x } ) /\ ( v e. J /\ v C_ d ) ) ) ) |
| 39 | 38 | adantr | |- ( ( ph /\ ( ( cls ` K ) ` ( F " ( d i^i A ) ) ) C_ w ) -> ( ( v e. J /\ ( { x } C_ v /\ v C_ d ) ) -> ( v e. ( ( nei ` J ) ` { x } ) /\ ( v e. J /\ v C_ d ) ) ) ) |
| 40 | haustop | |- ( K e. Haus -> K e. Top ) |
|
| 41 | 4 40 | syl | |- ( ph -> K e. Top ) |
| 42 | imassrn | |- ( F " ( d i^i A ) ) C_ ran F |
|
| 43 | 5 | frnd | |- ( ph -> ran F C_ B ) |
| 44 | 42 43 | sstrid | |- ( ph -> ( F " ( d i^i A ) ) C_ B ) |
| 45 | ssrin | |- ( v C_ d -> ( v i^i A ) C_ ( d i^i A ) ) |
|
| 46 | imass2 | |- ( ( v i^i A ) C_ ( d i^i A ) -> ( F " ( v i^i A ) ) C_ ( F " ( d i^i A ) ) ) |
|
| 47 | 45 46 | syl | |- ( v C_ d -> ( F " ( v i^i A ) ) C_ ( F " ( d i^i A ) ) ) |
| 48 | 2 | clsss | |- ( ( K e. Top /\ ( F " ( d i^i A ) ) C_ B /\ ( F " ( v i^i A ) ) C_ ( F " ( d i^i A ) ) ) -> ( ( cls ` K ) ` ( F " ( v i^i A ) ) ) C_ ( ( cls ` K ) ` ( F " ( d i^i A ) ) ) ) |
| 49 | 41 44 47 48 | syl2an3an | |- ( ( ph /\ v C_ d ) -> ( ( cls ` K ) ` ( F " ( v i^i A ) ) ) C_ ( ( cls ` K ) ` ( F " ( d i^i A ) ) ) ) |
| 50 | sstr | |- ( ( ( ( cls ` K ) ` ( F " ( v i^i A ) ) ) C_ ( ( cls ` K ) ` ( F " ( d i^i A ) ) ) /\ ( ( cls ` K ) ` ( F " ( d i^i A ) ) ) C_ w ) -> ( ( cls ` K ) ` ( F " ( v i^i A ) ) ) C_ w ) |
|
| 51 | 49 50 | sylan | |- ( ( ( ph /\ v C_ d ) /\ ( ( cls ` K ) ` ( F " ( d i^i A ) ) ) C_ w ) -> ( ( cls ` K ) ` ( F " ( v i^i A ) ) ) C_ w ) |
| 52 | 51 | an32s | |- ( ( ( ph /\ ( ( cls ` K ) ` ( F " ( d i^i A ) ) ) C_ w ) /\ v C_ d ) -> ( ( cls ` K ) ` ( F " ( v i^i A ) ) ) C_ w ) |
| 53 | 52 | ex | |- ( ( ph /\ ( ( cls ` K ) ` ( F " ( d i^i A ) ) ) C_ w ) -> ( v C_ d -> ( ( cls ` K ) ` ( F " ( v i^i A ) ) ) C_ w ) ) |
| 54 | 53 | anim2d | |- ( ( ph /\ ( ( cls ` K ) ` ( F " ( d i^i A ) ) ) C_ w ) -> ( ( v e. J /\ v C_ d ) -> ( v e. J /\ ( ( cls ` K ) ` ( F " ( v i^i A ) ) ) C_ w ) ) ) |
| 55 | 54 | anim2d | |- ( ( ph /\ ( ( cls ` K ) ` ( F " ( d i^i A ) ) ) C_ w ) -> ( ( v e. ( ( nei ` J ) ` { x } ) /\ ( v e. J /\ v C_ d ) ) -> ( v e. ( ( nei ` J ) ` { x } ) /\ ( v e. J /\ ( ( cls ` K ) ` ( F " ( v i^i A ) ) ) C_ w ) ) ) ) |
| 56 | 39 55 | syld | |- ( ( ph /\ ( ( cls ` K ) ` ( F " ( d i^i A ) ) ) C_ w ) -> ( ( v e. J /\ ( { x } C_ v /\ v C_ d ) ) -> ( v e. ( ( nei ` J ) ` { x } ) /\ ( v e. J /\ ( ( cls ` K ) ` ( F " ( v i^i A ) ) ) C_ w ) ) ) ) |
| 57 | 56 | reximdv2 | |- ( ( ph /\ ( ( cls ` K ) ` ( F " ( d i^i A ) ) ) C_ w ) -> ( E. v e. J ( { x } C_ v /\ v C_ d ) -> E. v e. ( ( nei ` J ) ` { x } ) ( v e. J /\ ( ( cls ` K ) ` ( F " ( v i^i A ) ) ) C_ w ) ) ) |
| 58 | 57 | imp | |- ( ( ( ph /\ ( ( cls ` K ) ` ( F " ( d i^i A ) ) ) C_ w ) /\ E. v e. J ( { x } C_ v /\ v C_ d ) ) -> E. v e. ( ( nei ` J ) ` { x } ) ( v e. J /\ ( ( cls ` K ) ` ( F " ( v i^i A ) ) ) C_ w ) ) |
| 59 | 11 12 16 58 | syl21anc | |- ( ( ( ph /\ x e. C ) /\ ( w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) /\ d e. ( ( nei ` J ) ` { x } ) /\ ( ( cls ` K ) ` ( F " ( d i^i A ) ) ) C_ w ) ) -> E. v e. ( ( nei ` J ) ` { x } ) ( v e. J /\ ( ( cls ` K ) ` ( F " ( v i^i A ) ) ) C_ w ) ) |
| 60 | 59 | 3anassrs | |- ( ( ( ( ( ph /\ x e. C ) /\ w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) /\ d e. ( ( nei ` J ) ` { x } ) ) /\ ( ( cls ` K ) ` ( F " ( d i^i A ) ) ) C_ w ) -> E. v e. ( ( nei ` J ) ` { x } ) ( v e. J /\ ( ( cls ` K ) ` ( F " ( v i^i A ) ) ) C_ w ) ) |
| 61 | simpr | |- ( ( ( ( ( ph /\ x e. C ) /\ w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) /\ u e. ( ( ( nei ` J ) ` { x } ) |`t A ) ) /\ ( ( cls ` K ) ` ( F " u ) ) C_ w ) -> ( ( cls ` K ) ` ( F " u ) ) C_ w ) |
|
| 62 | simp-4l | |- ( ( ( ( ( ph /\ x e. C ) /\ w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) /\ u e. ( ( ( nei ` J ) ` { x } ) |`t A ) ) /\ ( ( cls ` K ) ` ( F " u ) ) C_ w ) -> ph ) |
|
| 63 | simplr | |- ( ( ( ( ( ph /\ x e. C ) /\ w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) /\ u e. ( ( ( nei ` J ) ` { x } ) |`t A ) ) /\ ( ( cls ` K ) ` ( F " u ) ) C_ w ) -> u e. ( ( ( nei ` J ) ` { x } ) |`t A ) ) |
|
| 64 | imaeq2 | |- ( u = ( d i^i A ) -> ( F " u ) = ( F " ( d i^i A ) ) ) |
|
| 65 | 64 | fveq2d | |- ( u = ( d i^i A ) -> ( ( cls ` K ) ` ( F " u ) ) = ( ( cls ` K ) ` ( F " ( d i^i A ) ) ) ) |
| 66 | 65 | sseq1d | |- ( u = ( d i^i A ) -> ( ( ( cls ` K ) ` ( F " u ) ) C_ w <-> ( ( cls ` K ) ` ( F " ( d i^i A ) ) ) C_ w ) ) |
| 67 | 66 | biimpcd | |- ( ( ( cls ` K ) ` ( F " u ) ) C_ w -> ( u = ( d i^i A ) -> ( ( cls ` K ) ` ( F " ( d i^i A ) ) ) C_ w ) ) |
| 68 | 67 | reximdv | |- ( ( ( cls ` K ) ` ( F " u ) ) C_ w -> ( E. d e. ( ( nei ` J ) ` { x } ) u = ( d i^i A ) -> E. d e. ( ( nei ` J ) ` { x } ) ( ( cls ` K ) ` ( F " ( d i^i A ) ) ) C_ w ) ) |
| 69 | fvexd | |- ( ph -> ( ( nei ` J ) ` { x } ) e. _V ) |
|
| 70 | 1 | toptopon | |- ( J e. Top <-> J e. ( TopOn ` C ) ) |
| 71 | 3 70 | sylib | |- ( ph -> J e. ( TopOn ` C ) ) |
| 72 | 71 | elfvexd | |- ( ph -> C e. _V ) |
| 73 | 72 6 | ssexd | |- ( ph -> A e. _V ) |
| 74 | elrest | |- ( ( ( ( nei ` J ) ` { x } ) e. _V /\ A e. _V ) -> ( u e. ( ( ( nei ` J ) ` { x } ) |`t A ) <-> E. d e. ( ( nei ` J ) ` { x } ) u = ( d i^i A ) ) ) |
|
| 75 | 69 73 74 | syl2anc | |- ( ph -> ( u e. ( ( ( nei ` J ) ` { x } ) |`t A ) <-> E. d e. ( ( nei ` J ) ` { x } ) u = ( d i^i A ) ) ) |
| 76 | 75 | biimpa | |- ( ( ph /\ u e. ( ( ( nei ` J ) ` { x } ) |`t A ) ) -> E. d e. ( ( nei ` J ) ` { x } ) u = ( d i^i A ) ) |
| 77 | 68 76 | impel | |- ( ( ( ( cls ` K ) ` ( F " u ) ) C_ w /\ ( ph /\ u e. ( ( ( nei ` J ) ` { x } ) |`t A ) ) ) -> E. d e. ( ( nei ` J ) ` { x } ) ( ( cls ` K ) ` ( F " ( d i^i A ) ) ) C_ w ) |
| 78 | 61 62 63 77 | syl12anc | |- ( ( ( ( ( ph /\ x e. C ) /\ w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) /\ u e. ( ( ( nei ` J ) ` { x } ) |`t A ) ) /\ ( ( cls ` K ) ` ( F " u ) ) C_ w ) -> E. d e. ( ( nei ` J ) ` { x } ) ( ( cls ` K ) ` ( F " ( d i^i A ) ) ) C_ w ) |
| 79 | eleq1w | |- ( x = y -> ( x e. C <-> y e. C ) ) |
|
| 80 | 79 | anbi2d | |- ( x = y -> ( ( ph /\ x e. C ) <-> ( ph /\ y e. C ) ) ) |
| 81 | sneq | |- ( x = y -> { x } = { y } ) |
|
| 82 | 81 | fveq2d | |- ( x = y -> ( ( nei ` J ) ` { x } ) = ( ( nei ` J ) ` { y } ) ) |
| 83 | 82 | oveq1d | |- ( x = y -> ( ( ( nei ` J ) ` { x } ) |`t A ) = ( ( ( nei ` J ) ` { y } ) |`t A ) ) |
| 84 | 83 | oveq2d | |- ( x = y -> ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) = ( K fLimf ( ( ( nei ` J ) ` { y } ) |`t A ) ) ) |
| 85 | 84 | fveq1d | |- ( x = y -> ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) = ( ( K fLimf ( ( ( nei ` J ) ` { y } ) |`t A ) ) ` F ) ) |
| 86 | 85 | neeq1d | |- ( x = y -> ( ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) =/= (/) <-> ( ( K fLimf ( ( ( nei ` J ) ` { y } ) |`t A ) ) ` F ) =/= (/) ) ) |
| 87 | 80 86 | imbi12d | |- ( x = y -> ( ( ( ph /\ x e. C ) -> ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) =/= (/) ) <-> ( ( ph /\ y e. C ) -> ( ( K fLimf ( ( ( nei ` J ) ` { y } ) |`t A ) ) ` F ) =/= (/) ) ) ) |
| 88 | 87 8 | chvarvv | |- ( ( ph /\ y e. C ) -> ( ( K fLimf ( ( ( nei ` J ) ` { y } ) |`t A ) ) ` F ) =/= (/) ) |
| 89 | 1 2 3 4 5 6 7 88 | cnextfvval | |- ( ( ph /\ x e. C ) -> ( ( ( J CnExt K ) ` F ) ` x ) = U. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) |
| 90 | fvex | |- ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) e. _V |
|
| 91 | 90 | uniex | |- U. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) e. _V |
| 92 | 91 | snid | |- U. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) e. { U. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) } |
| 93 | 4 | adantr | |- ( ( ph /\ x e. C ) -> K e. Haus ) |
| 94 | 7 | eleq2d | |- ( ph -> ( x e. ( ( cls ` J ) ` A ) <-> x e. C ) ) |
| 95 | 94 | biimpar | |- ( ( ph /\ x e. C ) -> x e. ( ( cls ` J ) ` A ) ) |
| 96 | 71 | adantr | |- ( ( ph /\ x e. C ) -> J e. ( TopOn ` C ) ) |
| 97 | 6 | adantr | |- ( ( ph /\ x e. C ) -> A C_ C ) |
| 98 | simpr | |- ( ( ph /\ x e. C ) -> x e. C ) |
|
| 99 | trnei | |- ( ( J e. ( TopOn ` C ) /\ A C_ C /\ x e. C ) -> ( x e. ( ( cls ` J ) ` A ) <-> ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( Fil ` A ) ) ) |
|
| 100 | 96 97 98 99 | syl3anc | |- ( ( ph /\ x e. C ) -> ( x e. ( ( cls ` J ) ` A ) <-> ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( Fil ` A ) ) ) |
| 101 | 95 100 | mpbid | |- ( ( ph /\ x e. C ) -> ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( Fil ` A ) ) |
| 102 | 5 | adantr | |- ( ( ph /\ x e. C ) -> F : A --> B ) |
| 103 | 2 | hausflf2 | |- ( ( ( K e. Haus /\ ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( Fil ` A ) /\ F : A --> B ) /\ ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) =/= (/) ) -> ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ~~ 1o ) |
| 104 | 93 101 102 8 103 | syl31anc | |- ( ( ph /\ x e. C ) -> ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ~~ 1o ) |
| 105 | en1b | |- ( ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ~~ 1o <-> ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) = { U. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) } ) |
|
| 106 | 104 105 | sylib | |- ( ( ph /\ x e. C ) -> ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) = { U. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) } ) |
| 107 | 92 106 | eleqtrrid | |- ( ( ph /\ x e. C ) -> U. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) e. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) |
| 108 | 89 107 | eqeltrd | |- ( ( ph /\ x e. C ) -> ( ( ( J CnExt K ) ` F ) ` x ) e. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) |
| 109 | 2 | toptopon | |- ( K e. Top <-> K e. ( TopOn ` B ) ) |
| 110 | 41 109 | sylib | |- ( ph -> K e. ( TopOn ` B ) ) |
| 111 | 110 | adantr | |- ( ( ph /\ x e. C ) -> K e. ( TopOn ` B ) ) |
| 112 | flfnei | |- ( ( K e. ( TopOn ` B ) /\ ( ( ( nei ` J ) ` { x } ) |`t A ) e. ( Fil ` A ) /\ F : A --> B ) -> ( ( ( ( J CnExt K ) ` F ) ` x ) e. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) <-> ( ( ( ( J CnExt K ) ` F ) ` x ) e. B /\ A. b e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) E. u e. ( ( ( nei ` J ) ` { x } ) |`t A ) ( F " u ) C_ b ) ) ) |
|
| 113 | 111 101 102 112 | syl3anc | |- ( ( ph /\ x e. C ) -> ( ( ( ( J CnExt K ) ` F ) ` x ) e. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) <-> ( ( ( ( J CnExt K ) ` F ) ` x ) e. B /\ A. b e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) E. u e. ( ( ( nei ` J ) ` { x } ) |`t A ) ( F " u ) C_ b ) ) ) |
| 114 | 108 113 | mpbid | |- ( ( ph /\ x e. C ) -> ( ( ( ( J CnExt K ) ` F ) ` x ) e. B /\ A. b e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) E. u e. ( ( ( nei ` J ) ` { x } ) |`t A ) ( F " u ) C_ b ) ) |
| 115 | 114 | simprd | |- ( ( ph /\ x e. C ) -> A. b e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) E. u e. ( ( ( nei ` J ) ` { x } ) |`t A ) ( F " u ) C_ b ) |
| 116 | 115 | r19.21bi | |- ( ( ( ph /\ x e. C ) /\ b e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) -> E. u e. ( ( ( nei ` J ) ` { x } ) |`t A ) ( F " u ) C_ b ) |
| 117 | 116 | ad4ant13 | |- ( ( ( ( ( ph /\ x e. C ) /\ w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) /\ b e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) /\ ( ( cls ` K ) ` b ) C_ w ) -> E. u e. ( ( ( nei ` J ) ` { x } ) |`t A ) ( F " u ) C_ b ) |
| 118 | 41 | ad3antrrr | |- ( ( ( ( ph /\ x e. C ) /\ b e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) /\ ( ( cls ` K ) ` b ) C_ w ) -> K e. Top ) |
| 119 | simplr | |- ( ( ( ( ph /\ x e. C ) /\ b e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) /\ ( ( cls ` K ) ` b ) C_ w ) -> b e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) |
|
| 120 | 2 | neii1 | |- ( ( K e. Top /\ b e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) -> b C_ B ) |
| 121 | 118 119 120 | syl2anc | |- ( ( ( ( ph /\ x e. C ) /\ b e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) /\ ( ( cls ` K ) ` b ) C_ w ) -> b C_ B ) |
| 122 | simpr | |- ( ( ( ( ph /\ x e. C ) /\ b e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) /\ ( ( cls ` K ) ` b ) C_ w ) -> ( ( cls ` K ) ` b ) C_ w ) |
|
| 123 | 2 | clsss | |- ( ( K e. Top /\ b C_ B /\ ( F " u ) C_ b ) -> ( ( cls ` K ) ` ( F " u ) ) C_ ( ( cls ` K ) ` b ) ) |
| 124 | sstr | |- ( ( ( ( cls ` K ) ` ( F " u ) ) C_ ( ( cls ` K ) ` b ) /\ ( ( cls ` K ) ` b ) C_ w ) -> ( ( cls ` K ) ` ( F " u ) ) C_ w ) |
|
| 125 | 123 124 | sylan | |- ( ( ( K e. Top /\ b C_ B /\ ( F " u ) C_ b ) /\ ( ( cls ` K ) ` b ) C_ w ) -> ( ( cls ` K ) ` ( F " u ) ) C_ w ) |
| 126 | 125 | 3an1rs | |- ( ( ( K e. Top /\ b C_ B /\ ( ( cls ` K ) ` b ) C_ w ) /\ ( F " u ) C_ b ) -> ( ( cls ` K ) ` ( F " u ) ) C_ w ) |
| 127 | 126 | ex | |- ( ( K e. Top /\ b C_ B /\ ( ( cls ` K ) ` b ) C_ w ) -> ( ( F " u ) C_ b -> ( ( cls ` K ) ` ( F " u ) ) C_ w ) ) |
| 128 | 127 | reximdv | |- ( ( K e. Top /\ b C_ B /\ ( ( cls ` K ) ` b ) C_ w ) -> ( E. u e. ( ( ( nei ` J ) ` { x } ) |`t A ) ( F " u ) C_ b -> E. u e. ( ( ( nei ` J ) ` { x } ) |`t A ) ( ( cls ` K ) ` ( F " u ) ) C_ w ) ) |
| 129 | 118 121 122 128 | syl3anc | |- ( ( ( ( ph /\ x e. C ) /\ b e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) /\ ( ( cls ` K ) ` b ) C_ w ) -> ( E. u e. ( ( ( nei ` J ) ` { x } ) |`t A ) ( F " u ) C_ b -> E. u e. ( ( ( nei ` J ) ` { x } ) |`t A ) ( ( cls ` K ) ` ( F " u ) ) C_ w ) ) |
| 130 | 129 | adantllr | |- ( ( ( ( ( ph /\ x e. C ) /\ w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) /\ b e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) /\ ( ( cls ` K ) ` b ) C_ w ) -> ( E. u e. ( ( ( nei ` J ) ` { x } ) |`t A ) ( F " u ) C_ b -> E. u e. ( ( ( nei ` J ) ` { x } ) |`t A ) ( ( cls ` K ) ` ( F " u ) ) C_ w ) ) |
| 131 | 117 130 | mpd | |- ( ( ( ( ( ph /\ x e. C ) /\ w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) /\ b e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) /\ ( ( cls ` K ) ` b ) C_ w ) -> E. u e. ( ( ( nei ` J ) ` { x } ) |`t A ) ( ( cls ` K ) ` ( F " u ) ) C_ w ) |
| 132 | 41 | ad2antrr | |- ( ( ( ph /\ x e. C ) /\ w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) -> K e. Top ) |
| 133 | 9 | ad2antrr | |- ( ( ( ph /\ x e. C ) /\ w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) -> K e. Reg ) |
| 134 | 133 | ad2antrr | |- ( ( ( ( ( ph /\ x e. C ) /\ w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) /\ c e. K ) /\ ( ( ( ( J CnExt K ) ` F ) ` x ) e. c /\ c C_ w ) ) -> K e. Reg ) |
| 135 | simplr | |- ( ( ( ( ( ph /\ x e. C ) /\ w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) /\ c e. K ) /\ ( ( ( ( J CnExt K ) ` F ) ` x ) e. c /\ c C_ w ) ) -> c e. K ) |
|
| 136 | simprl | |- ( ( ( ( ( ph /\ x e. C ) /\ w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) /\ c e. K ) /\ ( ( ( ( J CnExt K ) ` F ) ` x ) e. c /\ c C_ w ) ) -> ( ( ( J CnExt K ) ` F ) ` x ) e. c ) |
|
| 137 | regsep | |- ( ( K e. Reg /\ c e. K /\ ( ( ( J CnExt K ) ` F ) ` x ) e. c ) -> E. b e. K ( ( ( ( J CnExt K ) ` F ) ` x ) e. b /\ ( ( cls ` K ) ` b ) C_ c ) ) |
|
| 138 | 134 135 136 137 | syl3anc | |- ( ( ( ( ( ph /\ x e. C ) /\ w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) /\ c e. K ) /\ ( ( ( ( J CnExt K ) ` F ) ` x ) e. c /\ c C_ w ) ) -> E. b e. K ( ( ( ( J CnExt K ) ` F ) ` x ) e. b /\ ( ( cls ` K ) ` b ) C_ c ) ) |
| 139 | sstr | |- ( ( ( ( cls ` K ) ` b ) C_ c /\ c C_ w ) -> ( ( cls ` K ) ` b ) C_ w ) |
|
| 140 | 139 | expcom | |- ( c C_ w -> ( ( ( cls ` K ) ` b ) C_ c -> ( ( cls ` K ) ` b ) C_ w ) ) |
| 141 | 140 | anim2d | |- ( c C_ w -> ( ( ( ( ( J CnExt K ) ` F ) ` x ) e. b /\ ( ( cls ` K ) ` b ) C_ c ) -> ( ( ( ( J CnExt K ) ` F ) ` x ) e. b /\ ( ( cls ` K ) ` b ) C_ w ) ) ) |
| 142 | 141 | reximdv | |- ( c C_ w -> ( E. b e. K ( ( ( ( J CnExt K ) ` F ) ` x ) e. b /\ ( ( cls ` K ) ` b ) C_ c ) -> E. b e. K ( ( ( ( J CnExt K ) ` F ) ` x ) e. b /\ ( ( cls ` K ) ` b ) C_ w ) ) ) |
| 143 | 142 | ad2antll | |- ( ( ( ( ( ph /\ x e. C ) /\ w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) /\ c e. K ) /\ ( ( ( ( J CnExt K ) ` F ) ` x ) e. c /\ c C_ w ) ) -> ( E. b e. K ( ( ( ( J CnExt K ) ` F ) ` x ) e. b /\ ( ( cls ` K ) ` b ) C_ c ) -> E. b e. K ( ( ( ( J CnExt K ) ` F ) ` x ) e. b /\ ( ( cls ` K ) ` b ) C_ w ) ) ) |
| 144 | 138 143 | mpd | |- ( ( ( ( ( ph /\ x e. C ) /\ w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) /\ c e. K ) /\ ( ( ( ( J CnExt K ) ` F ) ` x ) e. c /\ c C_ w ) ) -> E. b e. K ( ( ( ( J CnExt K ) ` F ) ` x ) e. b /\ ( ( cls ` K ) ` b ) C_ w ) ) |
| 145 | simpr | |- ( ( ( ph /\ x e. C ) /\ w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) -> w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) |
|
| 146 | neii2 | |- ( ( K e. Top /\ w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) -> E. c e. K ( { ( ( ( J CnExt K ) ` F ) ` x ) } C_ c /\ c C_ w ) ) |
|
| 147 | fvex | |- ( ( ( J CnExt K ) ` F ) ` x ) e. _V |
|
| 148 | 147 | snss | |- ( ( ( ( J CnExt K ) ` F ) ` x ) e. c <-> { ( ( ( J CnExt K ) ` F ) ` x ) } C_ c ) |
| 149 | 148 | anbi1i | |- ( ( ( ( ( J CnExt K ) ` F ) ` x ) e. c /\ c C_ w ) <-> ( { ( ( ( J CnExt K ) ` F ) ` x ) } C_ c /\ c C_ w ) ) |
| 150 | 149 | biimpri | |- ( ( { ( ( ( J CnExt K ) ` F ) ` x ) } C_ c /\ c C_ w ) -> ( ( ( ( J CnExt K ) ` F ) ` x ) e. c /\ c C_ w ) ) |
| 151 | 150 | reximi | |- ( E. c e. K ( { ( ( ( J CnExt K ) ` F ) ` x ) } C_ c /\ c C_ w ) -> E. c e. K ( ( ( ( J CnExt K ) ` F ) ` x ) e. c /\ c C_ w ) ) |
| 152 | 146 151 | syl | |- ( ( K e. Top /\ w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) -> E. c e. K ( ( ( ( J CnExt K ) ` F ) ` x ) e. c /\ c C_ w ) ) |
| 153 | 132 145 152 | syl2anc | |- ( ( ( ph /\ x e. C ) /\ w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) -> E. c e. K ( ( ( ( J CnExt K ) ` F ) ` x ) e. c /\ c C_ w ) ) |
| 154 | 144 153 | r19.29a | |- ( ( ( ph /\ x e. C ) /\ w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) -> E. b e. K ( ( ( ( J CnExt K ) ` F ) ` x ) e. b /\ ( ( cls ` K ) ` b ) C_ w ) ) |
| 155 | anass | |- ( ( ( b e. K /\ ( ( ( J CnExt K ) ` F ) ` x ) e. b ) /\ ( ( cls ` K ) ` b ) C_ w ) <-> ( b e. K /\ ( ( ( ( J CnExt K ) ` F ) ` x ) e. b /\ ( ( cls ` K ) ` b ) C_ w ) ) ) |
|
| 156 | opnneip | |- ( ( K e. Top /\ b e. K /\ ( ( ( J CnExt K ) ` F ) ` x ) e. b ) -> b e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) |
|
| 157 | 156 | 3expib | |- ( K e. Top -> ( ( b e. K /\ ( ( ( J CnExt K ) ` F ) ` x ) e. b ) -> b e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) ) |
| 158 | 157 | anim1d | |- ( K e. Top -> ( ( ( b e. K /\ ( ( ( J CnExt K ) ` F ) ` x ) e. b ) /\ ( ( cls ` K ) ` b ) C_ w ) -> ( b e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) /\ ( ( cls ` K ) ` b ) C_ w ) ) ) |
| 159 | 155 158 | biimtrrid | |- ( K e. Top -> ( ( b e. K /\ ( ( ( ( J CnExt K ) ` F ) ` x ) e. b /\ ( ( cls ` K ) ` b ) C_ w ) ) -> ( b e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) /\ ( ( cls ` K ) ` b ) C_ w ) ) ) |
| 160 | 159 | reximdv2 | |- ( K e. Top -> ( E. b e. K ( ( ( ( J CnExt K ) ` F ) ` x ) e. b /\ ( ( cls ` K ) ` b ) C_ w ) -> E. b e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ( ( cls ` K ) ` b ) C_ w ) ) |
| 161 | 132 154 160 | sylc | |- ( ( ( ph /\ x e. C ) /\ w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) -> E. b e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ( ( cls ` K ) ` b ) C_ w ) |
| 162 | 131 161 | r19.29a | |- ( ( ( ph /\ x e. C ) /\ w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) -> E. u e. ( ( ( nei ` J ) ` { x } ) |`t A ) ( ( cls ` K ) ` ( F " u ) ) C_ w ) |
| 163 | 78 162 | r19.29a | |- ( ( ( ph /\ x e. C ) /\ w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) -> E. d e. ( ( nei ` J ) ` { x } ) ( ( cls ` K ) ` ( F " ( d i^i A ) ) ) C_ w ) |
| 164 | 60 163 | r19.29a | |- ( ( ( ph /\ x e. C ) /\ w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) -> E. v e. ( ( nei ` J ) ` { x } ) ( v e. J /\ ( ( cls ` K ) ` ( F " ( v i^i A ) ) ) C_ w ) ) |
| 165 | simplr | |- ( ( ( ( ph /\ v e. J ) /\ ( ( cls ` K ) ` ( F " ( v i^i A ) ) ) C_ w ) /\ z e. v ) -> ( ( cls ` K ) ` ( F " ( v i^i A ) ) ) C_ w ) |
|
| 166 | simpll | |- ( ( ( ph /\ v e. J ) /\ z e. v ) -> ph ) |
|
| 167 | 3 | ad2antrr | |- ( ( ( ph /\ v e. J ) /\ z e. v ) -> J e. Top ) |
| 168 | simplr | |- ( ( ( ph /\ v e. J ) /\ z e. v ) -> v e. J ) |
|
| 169 | 1 | eltopss | |- ( ( J e. Top /\ v e. J ) -> v C_ C ) |
| 170 | 167 168 169 | syl2anc | |- ( ( ( ph /\ v e. J ) /\ z e. v ) -> v C_ C ) |
| 171 | simpr | |- ( ( ( ph /\ v e. J ) /\ z e. v ) -> z e. v ) |
|
| 172 | 170 171 | sseldd | |- ( ( ( ph /\ v e. J ) /\ z e. v ) -> z e. C ) |
| 173 | fvexd | |- ( ( ( ph /\ v e. J ) /\ z e. v ) -> ( ( nei ` J ) ` { z } ) e. _V ) |
|
| 174 | 73 | ad2antrr | |- ( ( ( ph /\ v e. J ) /\ z e. v ) -> A e. _V ) |
| 175 | opnneip | |- ( ( J e. Top /\ v e. J /\ z e. v ) -> v e. ( ( nei ` J ) ` { z } ) ) |
|
| 176 | 3 175 | syl3an1 | |- ( ( ph /\ v e. J /\ z e. v ) -> v e. ( ( nei ` J ) ` { z } ) ) |
| 177 | 176 | 3expa | |- ( ( ( ph /\ v e. J ) /\ z e. v ) -> v e. ( ( nei ` J ) ` { z } ) ) |
| 178 | elrestr | |- ( ( ( ( nei ` J ) ` { z } ) e. _V /\ A e. _V /\ v e. ( ( nei ` J ) ` { z } ) ) -> ( v i^i A ) e. ( ( ( nei ` J ) ` { z } ) |`t A ) ) |
|
| 179 | 173 174 177 178 | syl3anc | |- ( ( ( ph /\ v e. J ) /\ z e. v ) -> ( v i^i A ) e. ( ( ( nei ` J ) ` { z } ) |`t A ) ) |
| 180 | 1 2 3 4 5 6 7 8 | cnextfvval | |- ( ( ph /\ z e. C ) -> ( ( ( J CnExt K ) ` F ) ` z ) = U. ( ( K fLimf ( ( ( nei ` J ) ` { z } ) |`t A ) ) ` F ) ) |
| 181 | 180 | adantr | |- ( ( ( ph /\ z e. C ) /\ ( v i^i A ) e. ( ( ( nei ` J ) ` { z } ) |`t A ) ) -> ( ( ( J CnExt K ) ` F ) ` z ) = U. ( ( K fLimf ( ( ( nei ` J ) ` { z } ) |`t A ) ) ` F ) ) |
| 182 | 4 | adantr | |- ( ( ph /\ z e. C ) -> K e. Haus ) |
| 183 | 7 | eleq2d | |- ( ph -> ( z e. ( ( cls ` J ) ` A ) <-> z e. C ) ) |
| 184 | 183 | biimpar | |- ( ( ph /\ z e. C ) -> z e. ( ( cls ` J ) ` A ) ) |
| 185 | 71 | adantr | |- ( ( ph /\ z e. C ) -> J e. ( TopOn ` C ) ) |
| 186 | 6 | adantr | |- ( ( ph /\ z e. C ) -> A C_ C ) |
| 187 | simpr | |- ( ( ph /\ z e. C ) -> z e. C ) |
|
| 188 | trnei | |- ( ( J e. ( TopOn ` C ) /\ A C_ C /\ z e. C ) -> ( z e. ( ( cls ` J ) ` A ) <-> ( ( ( nei ` J ) ` { z } ) |`t A ) e. ( Fil ` A ) ) ) |
|
| 189 | 185 186 187 188 | syl3anc | |- ( ( ph /\ z e. C ) -> ( z e. ( ( cls ` J ) ` A ) <-> ( ( ( nei ` J ) ` { z } ) |`t A ) e. ( Fil ` A ) ) ) |
| 190 | 184 189 | mpbid | |- ( ( ph /\ z e. C ) -> ( ( ( nei ` J ) ` { z } ) |`t A ) e. ( Fil ` A ) ) |
| 191 | 5 | adantr | |- ( ( ph /\ z e. C ) -> F : A --> B ) |
| 192 | eleq1w | |- ( x = z -> ( x e. C <-> z e. C ) ) |
|
| 193 | 192 | anbi2d | |- ( x = z -> ( ( ph /\ x e. C ) <-> ( ph /\ z e. C ) ) ) |
| 194 | sneq | |- ( x = z -> { x } = { z } ) |
|
| 195 | 194 | fveq2d | |- ( x = z -> ( ( nei ` J ) ` { x } ) = ( ( nei ` J ) ` { z } ) ) |
| 196 | 195 | oveq1d | |- ( x = z -> ( ( ( nei ` J ) ` { x } ) |`t A ) = ( ( ( nei ` J ) ` { z } ) |`t A ) ) |
| 197 | 196 | oveq2d | |- ( x = z -> ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) = ( K fLimf ( ( ( nei ` J ) ` { z } ) |`t A ) ) ) |
| 198 | 197 | fveq1d | |- ( x = z -> ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) = ( ( K fLimf ( ( ( nei ` J ) ` { z } ) |`t A ) ) ` F ) ) |
| 199 | 198 | neeq1d | |- ( x = z -> ( ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) =/= (/) <-> ( ( K fLimf ( ( ( nei ` J ) ` { z } ) |`t A ) ) ` F ) =/= (/) ) ) |
| 200 | 193 199 | imbi12d | |- ( x = z -> ( ( ( ph /\ x e. C ) -> ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) =/= (/) ) <-> ( ( ph /\ z e. C ) -> ( ( K fLimf ( ( ( nei ` J ) ` { z } ) |`t A ) ) ` F ) =/= (/) ) ) ) |
| 201 | 200 8 | chvarvv | |- ( ( ph /\ z e. C ) -> ( ( K fLimf ( ( ( nei ` J ) ` { z } ) |`t A ) ) ` F ) =/= (/) ) |
| 202 | 2 | hausflf2 | |- ( ( ( K e. Haus /\ ( ( ( nei ` J ) ` { z } ) |`t A ) e. ( Fil ` A ) /\ F : A --> B ) /\ ( ( K fLimf ( ( ( nei ` J ) ` { z } ) |`t A ) ) ` F ) =/= (/) ) -> ( ( K fLimf ( ( ( nei ` J ) ` { z } ) |`t A ) ) ` F ) ~~ 1o ) |
| 203 | 182 190 191 201 202 | syl31anc | |- ( ( ph /\ z e. C ) -> ( ( K fLimf ( ( ( nei ` J ) ` { z } ) |`t A ) ) ` F ) ~~ 1o ) |
| 204 | en1b | |- ( ( ( K fLimf ( ( ( nei ` J ) ` { z } ) |`t A ) ) ` F ) ~~ 1o <-> ( ( K fLimf ( ( ( nei ` J ) ` { z } ) |`t A ) ) ` F ) = { U. ( ( K fLimf ( ( ( nei ` J ) ` { z } ) |`t A ) ) ` F ) } ) |
|
| 205 | 203 204 | sylib | |- ( ( ph /\ z e. C ) -> ( ( K fLimf ( ( ( nei ` J ) ` { z } ) |`t A ) ) ` F ) = { U. ( ( K fLimf ( ( ( nei ` J ) ` { z } ) |`t A ) ) ` F ) } ) |
| 206 | 205 | adantr | |- ( ( ( ph /\ z e. C ) /\ ( v i^i A ) e. ( ( ( nei ` J ) ` { z } ) |`t A ) ) -> ( ( K fLimf ( ( ( nei ` J ) ` { z } ) |`t A ) ) ` F ) = { U. ( ( K fLimf ( ( ( nei ` J ) ` { z } ) |`t A ) ) ` F ) } ) |
| 207 | 110 | adantr | |- ( ( ph /\ z e. C ) -> K e. ( TopOn ` B ) ) |
| 208 | flfval | |- ( ( K e. ( TopOn ` B ) /\ ( ( ( nei ` J ) ` { z } ) |`t A ) e. ( Fil ` A ) /\ F : A --> B ) -> ( ( K fLimf ( ( ( nei ` J ) ` { z } ) |`t A ) ) ` F ) = ( K fLim ( ( B FilMap F ) ` ( ( ( nei ` J ) ` { z } ) |`t A ) ) ) ) |
|
| 209 | 207 190 191 208 | syl3anc | |- ( ( ph /\ z e. C ) -> ( ( K fLimf ( ( ( nei ` J ) ` { z } ) |`t A ) ) ` F ) = ( K fLim ( ( B FilMap F ) ` ( ( ( nei ` J ) ` { z } ) |`t A ) ) ) ) |
| 210 | 209 | adantr | |- ( ( ( ph /\ z e. C ) /\ ( v i^i A ) e. ( ( ( nei ` J ) ` { z } ) |`t A ) ) -> ( ( K fLimf ( ( ( nei ` J ) ` { z } ) |`t A ) ) ` F ) = ( K fLim ( ( B FilMap F ) ` ( ( ( nei ` J ) ` { z } ) |`t A ) ) ) ) |
| 211 | 4 | uniexd | |- ( ph -> U. K e. _V ) |
| 212 | 211 | ad2antrr | |- ( ( ( ph /\ z e. C ) /\ ( v i^i A ) e. ( ( ( nei ` J ) ` { z } ) |`t A ) ) -> U. K e. _V ) |
| 213 | 2 212 | eqeltrid | |- ( ( ( ph /\ z e. C ) /\ ( v i^i A ) e. ( ( ( nei ` J ) ` { z } ) |`t A ) ) -> B e. _V ) |
| 214 | 190 | adantr | |- ( ( ( ph /\ z e. C ) /\ ( v i^i A ) e. ( ( ( nei ` J ) ` { z } ) |`t A ) ) -> ( ( ( nei ` J ) ` { z } ) |`t A ) e. ( Fil ` A ) ) |
| 215 | filfbas | |- ( ( ( ( nei ` J ) ` { z } ) |`t A ) e. ( Fil ` A ) -> ( ( ( nei ` J ) ` { z } ) |`t A ) e. ( fBas ` A ) ) |
|
| 216 | 214 215 | syl | |- ( ( ( ph /\ z e. C ) /\ ( v i^i A ) e. ( ( ( nei ` J ) ` { z } ) |`t A ) ) -> ( ( ( nei ` J ) ` { z } ) |`t A ) e. ( fBas ` A ) ) |
| 217 | 5 | ad2antrr | |- ( ( ( ph /\ z e. C ) /\ ( v i^i A ) e. ( ( ( nei ` J ) ` { z } ) |`t A ) ) -> F : A --> B ) |
| 218 | simpr | |- ( ( ( ph /\ z e. C ) /\ ( v i^i A ) e. ( ( ( nei ` J ) ` { z } ) |`t A ) ) -> ( v i^i A ) e. ( ( ( nei ` J ) ` { z } ) |`t A ) ) |
|
| 219 | fgfil | |- ( ( ( ( nei ` J ) ` { z } ) |`t A ) e. ( Fil ` A ) -> ( A filGen ( ( ( nei ` J ) ` { z } ) |`t A ) ) = ( ( ( nei ` J ) ` { z } ) |`t A ) ) |
|
| 220 | 190 219 | syl | |- ( ( ph /\ z e. C ) -> ( A filGen ( ( ( nei ` J ) ` { z } ) |`t A ) ) = ( ( ( nei ` J ) ` { z } ) |`t A ) ) |
| 221 | 220 | adantr | |- ( ( ( ph /\ z e. C ) /\ ( v i^i A ) e. ( ( ( nei ` J ) ` { z } ) |`t A ) ) -> ( A filGen ( ( ( nei ` J ) ` { z } ) |`t A ) ) = ( ( ( nei ` J ) ` { z } ) |`t A ) ) |
| 222 | 218 221 | eleqtrrd | |- ( ( ( ph /\ z e. C ) /\ ( v i^i A ) e. ( ( ( nei ` J ) ` { z } ) |`t A ) ) -> ( v i^i A ) e. ( A filGen ( ( ( nei ` J ) ` { z } ) |`t A ) ) ) |
| 223 | eqid | |- ( A filGen ( ( ( nei ` J ) ` { z } ) |`t A ) ) = ( A filGen ( ( ( nei ` J ) ` { z } ) |`t A ) ) |
|
| 224 | 223 | imaelfm | |- ( ( ( B e. _V /\ ( ( ( nei ` J ) ` { z } ) |`t A ) e. ( fBas ` A ) /\ F : A --> B ) /\ ( v i^i A ) e. ( A filGen ( ( ( nei ` J ) ` { z } ) |`t A ) ) ) -> ( F " ( v i^i A ) ) e. ( ( B FilMap F ) ` ( ( ( nei ` J ) ` { z } ) |`t A ) ) ) |
| 225 | 213 216 217 222 224 | syl31anc | |- ( ( ( ph /\ z e. C ) /\ ( v i^i A ) e. ( ( ( nei ` J ) ` { z } ) |`t A ) ) -> ( F " ( v i^i A ) ) e. ( ( B FilMap F ) ` ( ( ( nei ` J ) ` { z } ) |`t A ) ) ) |
| 226 | flimclsi | |- ( ( F " ( v i^i A ) ) e. ( ( B FilMap F ) ` ( ( ( nei ` J ) ` { z } ) |`t A ) ) -> ( K fLim ( ( B FilMap F ) ` ( ( ( nei ` J ) ` { z } ) |`t A ) ) ) C_ ( ( cls ` K ) ` ( F " ( v i^i A ) ) ) ) |
|
| 227 | 225 226 | syl | |- ( ( ( ph /\ z e. C ) /\ ( v i^i A ) e. ( ( ( nei ` J ) ` { z } ) |`t A ) ) -> ( K fLim ( ( B FilMap F ) ` ( ( ( nei ` J ) ` { z } ) |`t A ) ) ) C_ ( ( cls ` K ) ` ( F " ( v i^i A ) ) ) ) |
| 228 | 210 227 | eqsstrd | |- ( ( ( ph /\ z e. C ) /\ ( v i^i A ) e. ( ( ( nei ` J ) ` { z } ) |`t A ) ) -> ( ( K fLimf ( ( ( nei ` J ) ` { z } ) |`t A ) ) ` F ) C_ ( ( cls ` K ) ` ( F " ( v i^i A ) ) ) ) |
| 229 | 206 228 | eqsstrrd | |- ( ( ( ph /\ z e. C ) /\ ( v i^i A ) e. ( ( ( nei ` J ) ` { z } ) |`t A ) ) -> { U. ( ( K fLimf ( ( ( nei ` J ) ` { z } ) |`t A ) ) ` F ) } C_ ( ( cls ` K ) ` ( F " ( v i^i A ) ) ) ) |
| 230 | fvex | |- ( ( K fLimf ( ( ( nei ` J ) ` { z } ) |`t A ) ) ` F ) e. _V |
|
| 231 | 230 | uniex | |- U. ( ( K fLimf ( ( ( nei ` J ) ` { z } ) |`t A ) ) ` F ) e. _V |
| 232 | 231 | snss | |- ( U. ( ( K fLimf ( ( ( nei ` J ) ` { z } ) |`t A ) ) ` F ) e. ( ( cls ` K ) ` ( F " ( v i^i A ) ) ) <-> { U. ( ( K fLimf ( ( ( nei ` J ) ` { z } ) |`t A ) ) ` F ) } C_ ( ( cls ` K ) ` ( F " ( v i^i A ) ) ) ) |
| 233 | 229 232 | sylibr | |- ( ( ( ph /\ z e. C ) /\ ( v i^i A ) e. ( ( ( nei ` J ) ` { z } ) |`t A ) ) -> U. ( ( K fLimf ( ( ( nei ` J ) ` { z } ) |`t A ) ) ` F ) e. ( ( cls ` K ) ` ( F " ( v i^i A ) ) ) ) |
| 234 | 181 233 | eqeltrd | |- ( ( ( ph /\ z e. C ) /\ ( v i^i A ) e. ( ( ( nei ` J ) ` { z } ) |`t A ) ) -> ( ( ( J CnExt K ) ` F ) ` z ) e. ( ( cls ` K ) ` ( F " ( v i^i A ) ) ) ) |
| 235 | 166 172 179 234 | syl21anc | |- ( ( ( ph /\ v e. J ) /\ z e. v ) -> ( ( ( J CnExt K ) ` F ) ` z ) e. ( ( cls ` K ) ` ( F " ( v i^i A ) ) ) ) |
| 236 | 235 | adantlr | |- ( ( ( ( ph /\ v e. J ) /\ ( ( cls ` K ) ` ( F " ( v i^i A ) ) ) C_ w ) /\ z e. v ) -> ( ( ( J CnExt K ) ` F ) ` z ) e. ( ( cls ` K ) ` ( F " ( v i^i A ) ) ) ) |
| 237 | 165 236 | sseldd | |- ( ( ( ( ph /\ v e. J ) /\ ( ( cls ` K ) ` ( F " ( v i^i A ) ) ) C_ w ) /\ z e. v ) -> ( ( ( J CnExt K ) ` F ) ` z ) e. w ) |
| 238 | 237 | ralrimiva | |- ( ( ( ph /\ v e. J ) /\ ( ( cls ` K ) ` ( F " ( v i^i A ) ) ) C_ w ) -> A. z e. v ( ( ( J CnExt K ) ` F ) ` z ) e. w ) |
| 239 | 238 | expl | |- ( ph -> ( ( v e. J /\ ( ( cls ` K ) ` ( F " ( v i^i A ) ) ) C_ w ) -> A. z e. v ( ( ( J CnExt K ) ` F ) ` z ) e. w ) ) |
| 240 | 239 | reximdv | |- ( ph -> ( E. v e. ( ( nei ` J ) ` { x } ) ( v e. J /\ ( ( cls ` K ) ` ( F " ( v i^i A ) ) ) C_ w ) -> E. v e. ( ( nei ` J ) ` { x } ) A. z e. v ( ( ( J CnExt K ) ` F ) ` z ) e. w ) ) |
| 241 | 240 | ad2antrr | |- ( ( ( ph /\ x e. C ) /\ w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) -> ( E. v e. ( ( nei ` J ) ` { x } ) ( v e. J /\ ( ( cls ` K ) ` ( F " ( v i^i A ) ) ) C_ w ) -> E. v e. ( ( nei ` J ) ` { x } ) A. z e. v ( ( ( J CnExt K ) ` F ) ` z ) e. w ) ) |
| 242 | 164 241 | mpd | |- ( ( ( ph /\ x e. C ) /\ w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) -> E. v e. ( ( nei ` J ) ` { x } ) A. z e. v ( ( ( J CnExt K ) ` F ) ` z ) e. w ) |
| 243 | 1 2 3 4 5 6 7 8 | cnextf | |- ( ph -> ( ( J CnExt K ) ` F ) : C --> B ) |
| 244 | 243 | ffund | |- ( ph -> Fun ( ( J CnExt K ) ` F ) ) |
| 245 | 244 | adantr | |- ( ( ph /\ v e. ( ( nei ` J ) ` { x } ) ) -> Fun ( ( J CnExt K ) ` F ) ) |
| 246 | 1 | neii1 | |- ( ( J e. Top /\ v e. ( ( nei ` J ) ` { x } ) ) -> v C_ C ) |
| 247 | 3 246 | sylan | |- ( ( ph /\ v e. ( ( nei ` J ) ` { x } ) ) -> v C_ C ) |
| 248 | 243 | fdmd | |- ( ph -> dom ( ( J CnExt K ) ` F ) = C ) |
| 249 | 248 | adantr | |- ( ( ph /\ v e. ( ( nei ` J ) ` { x } ) ) -> dom ( ( J CnExt K ) ` F ) = C ) |
| 250 | 247 249 | sseqtrrd | |- ( ( ph /\ v e. ( ( nei ` J ) ` { x } ) ) -> v C_ dom ( ( J CnExt K ) ` F ) ) |
| 251 | funimass4 | |- ( ( Fun ( ( J CnExt K ) ` F ) /\ v C_ dom ( ( J CnExt K ) ` F ) ) -> ( ( ( ( J CnExt K ) ` F ) " v ) C_ w <-> A. z e. v ( ( ( J CnExt K ) ` F ) ` z ) e. w ) ) |
|
| 252 | 245 250 251 | syl2anc | |- ( ( ph /\ v e. ( ( nei ` J ) ` { x } ) ) -> ( ( ( ( J CnExt K ) ` F ) " v ) C_ w <-> A. z e. v ( ( ( J CnExt K ) ` F ) ` z ) e. w ) ) |
| 253 | 252 | biimprd | |- ( ( ph /\ v e. ( ( nei ` J ) ` { x } ) ) -> ( A. z e. v ( ( ( J CnExt K ) ` F ) ` z ) e. w -> ( ( ( J CnExt K ) ` F ) " v ) C_ w ) ) |
| 254 | 253 | reximdva | |- ( ph -> ( E. v e. ( ( nei ` J ) ` { x } ) A. z e. v ( ( ( J CnExt K ) ` F ) ` z ) e. w -> E. v e. ( ( nei ` J ) ` { x } ) ( ( ( J CnExt K ) ` F ) " v ) C_ w ) ) |
| 255 | 10 242 254 | sylc | |- ( ( ( ph /\ x e. C ) /\ w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) ) -> E. v e. ( ( nei ` J ) ` { x } ) ( ( ( J CnExt K ) ` F ) " v ) C_ w ) |
| 256 | 255 | ralrimiva | |- ( ( ph /\ x e. C ) -> A. w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) E. v e. ( ( nei ` J ) ` { x } ) ( ( ( J CnExt K ) ` F ) " v ) C_ w ) |
| 257 | 256 | ralrimiva | |- ( ph -> A. x e. C A. w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) E. v e. ( ( nei ` J ) ` { x } ) ( ( ( J CnExt K ) ` F ) " v ) C_ w ) |
| 258 | 1 2 | cnnei | |- ( ( J e. Top /\ K e. Top /\ ( ( J CnExt K ) ` F ) : C --> B ) -> ( ( ( J CnExt K ) ` F ) e. ( J Cn K ) <-> A. x e. C A. w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) E. v e. ( ( nei ` J ) ` { x } ) ( ( ( J CnExt K ) ` F ) " v ) C_ w ) ) |
| 259 | 3 41 243 258 | syl3anc | |- ( ph -> ( ( ( J CnExt K ) ` F ) e. ( J Cn K ) <-> A. x e. C A. w e. ( ( nei ` K ) ` { ( ( ( J CnExt K ) ` F ) ` x ) } ) E. v e. ( ( nei ` J ) ` { x } ) ( ( ( J CnExt K ) ` F ) " v ) C_ w ) ) |
| 260 | 257 259 | mpbird | |- ( ph -> ( ( J CnExt K ) ` F ) e. ( J Cn K ) ) |