This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: syl3an with antecedents in standard conjunction form. (Contributed by Alan Sare, 31-Aug-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syl2an3an.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| syl2an3an.2 | ⊢ ( 𝜑 → 𝜒 ) | ||
| syl2an3an.3 | ⊢ ( 𝜃 → 𝜏 ) | ||
| syl2an3an.4 | ⊢ ( ( 𝜓 ∧ 𝜒 ∧ 𝜏 ) → 𝜂 ) | ||
| Assertion | syl2an3an | ⊢ ( ( 𝜑 ∧ 𝜃 ) → 𝜂 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl2an3an.1 | ⊢ ( 𝜑 → 𝜓 ) | |
| 2 | syl2an3an.2 | ⊢ ( 𝜑 → 𝜒 ) | |
| 3 | syl2an3an.3 | ⊢ ( 𝜃 → 𝜏 ) | |
| 4 | syl2an3an.4 | ⊢ ( ( 𝜓 ∧ 𝜒 ∧ 𝜏 ) → 𝜂 ) | |
| 5 | 1 2 3 4 | syl3an | ⊢ ( ( 𝜑 ∧ 𝜑 ∧ 𝜃 ) → 𝜂 ) |
| 6 | 5 | 3anidm12 | ⊢ ( ( 𝜑 ∧ 𝜃 ) → 𝜂 ) |