This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a convergent function has its values in a Hausdorff space, then it has a unique limit. (Contributed by FL, 14-Nov-2010) (Revised by Stefan O'Rear, 6-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hausflf.x | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | hausflf2 | ⊢ ( ( ( 𝐽 ∈ Haus ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ≠ ∅ ) → ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ≈ 1o ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hausflf.x | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | n0 | ⊢ ( ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ) | |
| 3 | 2 | biimpi | ⊢ ( ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ≠ ∅ → ∃ 𝑥 𝑥 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ) |
| 4 | 1 | hausflf | ⊢ ( ( 𝐽 ∈ Haus ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ∃* 𝑥 𝑥 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ) |
| 5 | euen1b | ⊢ ( ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ≈ 1o ↔ ∃! 𝑥 𝑥 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ) | |
| 6 | df-eu | ⊢ ( ∃! 𝑥 𝑥 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ↔ ( ∃ 𝑥 𝑥 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ∧ ∃* 𝑥 𝑥 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ) ) | |
| 7 | 5 6 | sylbbr | ⊢ ( ( ∃ 𝑥 𝑥 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ∧ ∃* 𝑥 𝑥 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ) → ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ≈ 1o ) |
| 8 | 3 4 7 | syl2anr | ⊢ ( ( ( 𝐽 ∈ Haus ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ≠ ∅ ) → ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ≈ 1o ) |