This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of a neighborhood. (Contributed by NM, 12-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | neii2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | neiss2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 3 | 1 | isnei | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( 𝑁 ⊆ ∪ 𝐽 ∧ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) ) ) |
| 4 | simpr | ⊢ ( ( 𝑁 ⊆ ∪ 𝐽 ∧ ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) → ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) | |
| 5 | 3 4 | biimtrdi | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ) → ( 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) → ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) ) |
| 6 | 5 | impancom | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → ( 𝑆 ⊆ ∪ 𝐽 → ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) ) |
| 7 | 2 6 | mpd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑁 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → ∃ 𝑔 ∈ 𝐽 ( 𝑆 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑁 ) ) |