This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extension by continuity. The extension by continuity is a function. (Contributed by Thierry Arnoux, 25-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnextf.1 | ⊢ 𝐶 = ∪ 𝐽 | |
| cnextf.2 | ⊢ 𝐵 = ∪ 𝐾 | ||
| cnextf.3 | ⊢ ( 𝜑 → 𝐽 ∈ Top ) | ||
| cnextf.4 | ⊢ ( 𝜑 → 𝐾 ∈ Haus ) | ||
| cnextf.5 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| cnextf.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) | ||
| cnextf.6 | ⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝐶 ) | ||
| cnextf.7 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ) | ||
| Assertion | cnextf | ⊢ ( 𝜑 → ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) : 𝐶 ⟶ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnextf.1 | ⊢ 𝐶 = ∪ 𝐽 | |
| 2 | cnextf.2 | ⊢ 𝐵 = ∪ 𝐾 | |
| 3 | cnextf.3 | ⊢ ( 𝜑 → 𝐽 ∈ Top ) | |
| 4 | cnextf.4 | ⊢ ( 𝜑 → 𝐾 ∈ Haus ) | |
| 5 | cnextf.5 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 6 | cnextf.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) | |
| 7 | cnextf.6 | ⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝐶 ) | |
| 8 | cnextf.7 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ) | |
| 9 | 1 2 | cnextfun | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Haus ) ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ 𝐶 ) ) → Fun ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ) |
| 10 | 3 4 5 6 9 | syl22anc | ⊢ ( 𝜑 → Fun ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ) |
| 11 | dfdm3 | ⊢ dom ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) = { 𝑥 ∣ ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) } | |
| 12 | simpl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝜑 ) | |
| 13 | 7 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ 𝑥 ∈ 𝐶 ) ) |
| 14 | 13 | biimpar | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) |
| 15 | n0 | ⊢ ( ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) | |
| 16 | 8 15 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ∃ 𝑦 𝑦 ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) |
| 17 | haustop | ⊢ ( 𝐾 ∈ Haus → 𝐾 ∈ Top ) | |
| 18 | 4 17 | syl | ⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 19 | 1 2 | cnextfval | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ 𝐶 ) ) → ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) = ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) |
| 20 | 3 18 5 6 19 | syl22anc | ⊢ ( 𝜑 → ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) = ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) |
| 21 | 20 | eleq2d | ⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ↔ 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) ) |
| 22 | opeliunxp | ⊢ ( 〈 𝑥 , 𝑦 〉 ∈ ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ↔ ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) | |
| 23 | 21 22 | bitrdi | ⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ↔ ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) ) |
| 24 | 23 | exbidv | ⊢ ( 𝜑 → ( ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ↔ ∃ 𝑦 ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) ) |
| 25 | 19.42v | ⊢ ( ∃ 𝑦 ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∧ 𝑦 ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ↔ ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∧ ∃ 𝑦 𝑦 ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) | |
| 26 | 24 25 | bitrdi | ⊢ ( 𝜑 → ( ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ↔ ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∧ ∃ 𝑦 𝑦 ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) ) |
| 27 | 26 | biimpar | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∧ ∃ 𝑦 𝑦 ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) → ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ) |
| 28 | 12 14 16 27 | syl12anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ) |
| 29 | 26 | simprbda | ⊢ ( ( 𝜑 ∧ ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ) → 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) |
| 30 | 13 | adantr | ⊢ ( ( 𝜑 ∧ ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ 𝑥 ∈ 𝐶 ) ) |
| 31 | 29 30 | mpbid | ⊢ ( ( 𝜑 ∧ ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ) → 𝑥 ∈ 𝐶 ) |
| 32 | 28 31 | impbida | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐶 ↔ ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ) ) |
| 33 | 32 | eqabdv | ⊢ ( 𝜑 → 𝐶 = { 𝑥 ∣ ∃ 𝑦 〈 𝑥 , 𝑦 〉 ∈ ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) } ) |
| 34 | 11 33 | eqtr4id | ⊢ ( 𝜑 → dom ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) = 𝐶 ) |
| 35 | df-fn | ⊢ ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) Fn 𝐶 ↔ ( Fun ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ∧ dom ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) = 𝐶 ) ) | |
| 36 | 10 34 35 | sylanbrc | ⊢ ( 𝜑 → ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) Fn 𝐶 ) |
| 37 | 20 | rneqd | ⊢ ( 𝜑 → ran ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) = ran ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) |
| 38 | rniun | ⊢ ran ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) = ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ran ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) | |
| 39 | vex | ⊢ 𝑥 ∈ V | |
| 40 | 39 | snnz | ⊢ { 𝑥 } ≠ ∅ |
| 41 | rnxp | ⊢ ( { 𝑥 } ≠ ∅ → ran ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) = ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) | |
| 42 | 40 41 | ax-mp | ⊢ ran ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) = ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) |
| 43 | 13 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) → 𝑥 ∈ 𝐶 ) |
| 44 | 2 | toptopon | ⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ 𝐵 ) ) |
| 45 | 18 44 | sylib | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝐵 ) ) |
| 46 | 45 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐾 ∈ ( TopOn ‘ 𝐵 ) ) |
| 47 | 1 | toptopon | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝐶 ) ) |
| 48 | 3 47 | sylib | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝐶 ) ) |
| 49 | 48 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐽 ∈ ( TopOn ‘ 𝐶 ) ) |
| 50 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐴 ⊆ 𝐶 ) |
| 51 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ 𝐶 ) | |
| 52 | trnei | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝐶 ) ∧ 𝐴 ⊆ 𝐶 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ) ) | |
| 53 | 52 | biimpa | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝐶 ) ∧ 𝐴 ⊆ 𝐶 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ) |
| 54 | 49 50 51 14 53 | syl31anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ) |
| 55 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 56 | flfelbas | ⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝐵 ) ∧ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑦 ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) → 𝑦 ∈ 𝐵 ) | |
| 57 | 56 | ex | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝐵 ) ∧ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝑦 ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) → 𝑦 ∈ 𝐵 ) ) |
| 58 | 57 | ssrdv | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝐵 ) ∧ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ⊆ 𝐵 ) |
| 59 | 46 54 55 58 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ⊆ 𝐵 ) |
| 60 | 43 59 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ⊆ 𝐵 ) |
| 61 | 42 60 | eqsstrid | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) → ran ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ⊆ 𝐵 ) |
| 62 | 61 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ran ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ⊆ 𝐵 ) |
| 63 | iunss | ⊢ ( ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ran ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ⊆ 𝐵 ↔ ∀ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ran ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ⊆ 𝐵 ) | |
| 64 | 62 63 | sylibr | ⊢ ( 𝜑 → ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ran ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ⊆ 𝐵 ) |
| 65 | 38 64 | eqsstrid | ⊢ ( 𝜑 → ran ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ⊆ 𝐵 ) |
| 66 | 37 65 | eqsstrd | ⊢ ( 𝜑 → ran ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ⊆ 𝐵 ) |
| 67 | df-f | ⊢ ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) : 𝐶 ⟶ 𝐵 ↔ ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) Fn 𝐶 ∧ ran ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ⊆ 𝐵 ) ) | |
| 68 | 36 66 67 | sylanbrc | ⊢ ( 𝜑 → ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) : 𝐶 ⟶ 𝐵 ) |