This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An image of a filter element is in the image filter. (Contributed by Jeff Hankins, 5-Oct-2009) (Revised by Stefan O'Rear, 6-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | imaelfm.l | ⊢ 𝐿 = ( 𝑌 filGen 𝐵 ) | |
| Assertion | imaelfm | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑆 ∈ 𝐿 ) → ( 𝐹 “ 𝑆 ) ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imaelfm.l | ⊢ 𝐿 = ( 𝑌 filGen 𝐵 ) | |
| 2 | fimass | ⊢ ( 𝐹 : 𝑌 ⟶ 𝑋 → ( 𝐹 “ 𝑆 ) ⊆ 𝑋 ) | |
| 3 | 2 | 3ad2ant3 | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐹 “ 𝑆 ) ⊆ 𝑋 ) |
| 4 | ssid | ⊢ ( 𝐹 “ 𝑆 ) ⊆ ( 𝐹 “ 𝑆 ) | |
| 5 | imaeq2 | ⊢ ( 𝑥 = 𝑆 → ( 𝐹 “ 𝑥 ) = ( 𝐹 “ 𝑆 ) ) | |
| 6 | 5 | sseq1d | ⊢ ( 𝑥 = 𝑆 → ( ( 𝐹 “ 𝑥 ) ⊆ ( 𝐹 “ 𝑆 ) ↔ ( 𝐹 “ 𝑆 ) ⊆ ( 𝐹 “ 𝑆 ) ) ) |
| 7 | 6 | rspcev | ⊢ ( ( 𝑆 ∈ 𝐿 ∧ ( 𝐹 “ 𝑆 ) ⊆ ( 𝐹 “ 𝑆 ) ) → ∃ 𝑥 ∈ 𝐿 ( 𝐹 “ 𝑥 ) ⊆ ( 𝐹 “ 𝑆 ) ) |
| 8 | 4 7 | mpan2 | ⊢ ( 𝑆 ∈ 𝐿 → ∃ 𝑥 ∈ 𝐿 ( 𝐹 “ 𝑥 ) ⊆ ( 𝐹 “ 𝑆 ) ) |
| 9 | 3 8 | anim12i | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑆 ∈ 𝐿 ) → ( ( 𝐹 “ 𝑆 ) ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐿 ( 𝐹 “ 𝑥 ) ⊆ ( 𝐹 “ 𝑆 ) ) ) |
| 10 | 1 | elfm2 | ⊢ ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝐹 “ 𝑆 ) ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ↔ ( ( 𝐹 “ 𝑆 ) ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐿 ( 𝐹 “ 𝑥 ) ⊆ ( 𝐹 “ 𝑆 ) ) ) ) |
| 11 | 10 | adantr | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑆 ∈ 𝐿 ) → ( ( 𝐹 “ 𝑆 ) ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ↔ ( ( 𝐹 “ 𝑆 ) ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐿 ( 𝐹 “ 𝑥 ) ⊆ ( 𝐹 “ 𝑆 ) ) ) ) |
| 12 | 9 11 | mpbird | ⊢ ( ( ( 𝑋 ∈ 𝐴 ∧ 𝐵 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑆 ∈ 𝐿 ) → ( 𝐹 “ 𝑆 ) ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐵 ) ) |