This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being a limit point of a function in terms of neighborhoods. (Contributed by Jeff Hankins, 9-Nov-2009) (Revised by Stefan O'Rear, 6-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flfnei | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑛 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flfval | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) = ( 𝐽 fLim ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ) | |
| 2 | 1 | eleq2d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ↔ 𝐴 ∈ ( 𝐽 fLim ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ) ) |
| 3 | simp1 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 4 | toponmax | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 ∈ 𝐽 ) | |
| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → 𝑋 ∈ 𝐽 ) |
| 6 | filfbas | ⊢ ( 𝐿 ∈ ( Fil ‘ 𝑌 ) → 𝐿 ∈ ( fBas ‘ 𝑌 ) ) | |
| 7 | 6 | 3ad2ant2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → 𝐿 ∈ ( fBas ‘ 𝑌 ) ) |
| 8 | simp3 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → 𝐹 : 𝑌 ⟶ 𝑋 ) | |
| 9 | fmfil | ⊢ ( ( 𝑋 ∈ 𝐽 ∧ 𝐿 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ∈ ( Fil ‘ 𝑋 ) ) | |
| 10 | 5 7 8 9 | syl3anc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ∈ ( Fil ‘ 𝑋 ) ) |
| 11 | elflim | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ∈ ( Fil ‘ 𝑋 ) ) → ( 𝐴 ∈ ( 𝐽 fLim ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ↔ ( 𝐴 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ) ) | |
| 12 | 3 10 11 | syl2anc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( 𝐽 fLim ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ↔ ( 𝐴 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ) ) |
| 13 | dfss3 | ⊢ ( ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ↔ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) 𝑛 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) | |
| 14 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 15 | 14 | 3ad2ant1 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → 𝐽 ∈ Top ) |
| 16 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 17 | 16 | neii1 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝑛 ⊆ ∪ 𝐽 ) |
| 18 | 15 17 | sylan | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝑛 ⊆ ∪ 𝐽 ) |
| 19 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 20 | 19 | 3ad2ant1 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 21 | 20 | adantr | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝑋 = ∪ 𝐽 ) |
| 22 | 18 21 | sseqtrrd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → 𝑛 ⊆ 𝑋 ) |
| 23 | elfm | ⊢ ( ( 𝑋 ∈ 𝐽 ∧ 𝐿 ∈ ( fBas ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑛 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ↔ ( 𝑛 ⊆ 𝑋 ∧ ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑛 ) ) ) | |
| 24 | 5 7 8 23 | syl3anc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝑛 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ↔ ( 𝑛 ⊆ 𝑋 ∧ ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑛 ) ) ) |
| 25 | 24 | baibd | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑛 ⊆ 𝑋 ) → ( 𝑛 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ↔ ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑛 ) ) |
| 26 | 22 25 | syldan | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) ∧ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ) → ( 𝑛 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ↔ ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑛 ) ) |
| 27 | 26 | ralbidva | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) 𝑛 ∈ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ↔ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑛 ) ) |
| 28 | 13 27 | bitrid | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ↔ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑛 ) ) |
| 29 | 28 | anbi2d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( ( 𝐴 ∈ 𝑋 ∧ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ⊆ ( ( 𝑋 FilMap 𝐹 ) ‘ 𝐿 ) ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑛 ) ) ) |
| 30 | 2 12 29 | 3bitrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐿 ∈ ( Fil ‘ 𝑌 ) ∧ 𝐹 : 𝑌 ⟶ 𝑋 ) → ( 𝐴 ∈ ( ( 𝐽 fLimf 𝐿 ) ‘ 𝐹 ) ↔ ( 𝐴 ∈ 𝑋 ∧ ∀ 𝑛 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝐴 } ) ∃ 𝑠 ∈ 𝐿 ( 𝐹 “ 𝑠 ) ⊆ 𝑛 ) ) ) |