This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the continuous extension of a given function F at a point X . (Contributed by Thierry Arnoux, 21-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnextf.1 | ⊢ 𝐶 = ∪ 𝐽 | |
| cnextf.2 | ⊢ 𝐵 = ∪ 𝐾 | ||
| cnextf.3 | ⊢ ( 𝜑 → 𝐽 ∈ Top ) | ||
| cnextf.4 | ⊢ ( 𝜑 → 𝐾 ∈ Haus ) | ||
| cnextf.5 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| cnextf.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) | ||
| cnextf.6 | ⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝐶 ) | ||
| cnextf.7 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ) | ||
| Assertion | cnextfvval | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑋 ) = ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnextf.1 | ⊢ 𝐶 = ∪ 𝐽 | |
| 2 | cnextf.2 | ⊢ 𝐵 = ∪ 𝐾 | |
| 3 | cnextf.3 | ⊢ ( 𝜑 → 𝐽 ∈ Top ) | |
| 4 | cnextf.4 | ⊢ ( 𝜑 → 𝐾 ∈ Haus ) | |
| 5 | cnextf.5 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 6 | cnextf.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) | |
| 7 | cnextf.6 | ⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝐶 ) | |
| 8 | cnextf.7 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ) | |
| 9 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → 𝐽 ∈ Top ) |
| 10 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → 𝐾 ∈ Haus ) |
| 11 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 12 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → 𝐴 ⊆ 𝐶 ) |
| 13 | 1 2 | cnextfun | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Haus ) ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ 𝐶 ) ) → Fun ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ) |
| 14 | 9 10 11 12 13 | syl22anc | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → Fun ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ) |
| 15 | 7 | eleq2d | ⊢ ( 𝜑 → ( 𝑋 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ 𝑋 ∈ 𝐶 ) ) |
| 16 | 15 | biimpar | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → 𝑋 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) |
| 17 | fvex | ⊢ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ∈ V | |
| 18 | 17 | uniex | ⊢ ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ∈ V |
| 19 | 18 | snid | ⊢ ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ∈ { ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) } |
| 20 | sneq | ⊢ ( 𝑥 = 𝑋 → { 𝑥 } = { 𝑋 } ) | |
| 21 | 20 | fveq2d | ⊢ ( 𝑥 = 𝑋 → ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) = ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ) |
| 22 | 21 | oveq1d | ⊢ ( 𝑥 = 𝑋 → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) = ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) |
| 23 | 22 | oveq2d | ⊢ ( 𝑥 = 𝑋 → ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) = ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ) |
| 24 | 23 | fveq1d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) = ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) |
| 25 | 24 | breq1d | ⊢ ( 𝑥 = 𝑋 → ( ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≈ 1o ↔ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≈ 1o ) ) |
| 26 | 25 | imbi2d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝜑 → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≈ 1o ) ↔ ( 𝜑 → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≈ 1o ) ) ) |
| 27 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐾 ∈ Haus ) |
| 28 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐽 ∈ Top ) |
| 29 | 1 | toptopon | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝐶 ) ) |
| 30 | 28 29 | sylib | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐽 ∈ ( TopOn ‘ 𝐶 ) ) |
| 31 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐴 ⊆ 𝐶 ) |
| 32 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ 𝐶 ) | |
| 33 | 7 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ 𝑥 ∈ 𝐶 ) ) |
| 34 | 33 | biimpar | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) |
| 35 | trnei | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝐶 ) ∧ 𝐴 ⊆ 𝐶 ∧ 𝑥 ∈ 𝐶 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ) ) | |
| 36 | 35 | biimpa | ⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝐶 ) ∧ 𝐴 ⊆ 𝐶 ∧ 𝑥 ∈ 𝐶 ) ∧ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ) |
| 37 | 30 31 32 34 36 | syl31anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ) |
| 38 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 39 | 2 | hausflf2 | ⊢ ( ( ( 𝐾 ∈ Haus ∧ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≈ 1o ) |
| 40 | 27 37 38 8 39 | syl31anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≈ 1o ) |
| 41 | 40 | expcom | ⊢ ( 𝑥 ∈ 𝐶 → ( 𝜑 → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≈ 1o ) ) |
| 42 | 26 41 | vtoclga | ⊢ ( 𝑋 ∈ 𝐶 → ( 𝜑 → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≈ 1o ) ) |
| 43 | 42 | impcom | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≈ 1o ) |
| 44 | en1b | ⊢ ( ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≈ 1o ↔ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) = { ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) } ) | |
| 45 | 43 44 | sylib | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) = { ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) } ) |
| 46 | 19 45 | eleqtrrid | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) |
| 47 | nfiu1 | ⊢ Ⅎ 𝑥 ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) | |
| 48 | 47 | nfel2 | ⊢ Ⅎ 𝑥 〈 𝑋 , ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) 〉 ∈ ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) |
| 49 | nfv | ⊢ Ⅎ 𝑥 ( 𝑋 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∧ ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) | |
| 50 | 48 49 | nfbi | ⊢ Ⅎ 𝑥 ( 〈 𝑋 , ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) 〉 ∈ ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ↔ ( 𝑋 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∧ ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) |
| 51 | opeq1 | ⊢ ( 𝑥 = 𝑋 → 〈 𝑥 , ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) 〉 = 〈 𝑋 , ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) 〉 ) | |
| 52 | 51 | eleq1d | ⊢ ( 𝑥 = 𝑋 → ( 〈 𝑥 , ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) 〉 ∈ ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ↔ 〈 𝑋 , ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) 〉 ∈ ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) ) |
| 53 | eleq1 | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ 𝑋 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) ) | |
| 54 | 24 | eleq2d | ⊢ ( 𝑥 = 𝑋 → ( ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ↔ ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) |
| 55 | 53 54 | anbi12d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∧ ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ↔ ( 𝑋 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∧ ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) ) |
| 56 | 52 55 | bibi12d | ⊢ ( 𝑥 = 𝑋 → ( ( 〈 𝑥 , ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) 〉 ∈ ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ↔ ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∧ ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) ↔ ( 〈 𝑋 , ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) 〉 ∈ ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ↔ ( 𝑋 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∧ ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) ) ) |
| 57 | opeliunxp | ⊢ ( 〈 𝑥 , ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) 〉 ∈ ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ↔ ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∧ ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) | |
| 58 | 50 56 57 | vtoclg1f | ⊢ ( 𝑋 ∈ 𝐶 → ( 〈 𝑋 , ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) 〉 ∈ ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ↔ ( 𝑋 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∧ ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) ) |
| 59 | 58 | adantl | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 〈 𝑋 , ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) 〉 ∈ ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ↔ ( 𝑋 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∧ ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) ) |
| 60 | 16 46 59 | mpbir2and | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → 〈 𝑋 , ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) 〉 ∈ ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) |
| 61 | df-br | ⊢ ( 𝑋 ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ↔ 〈 𝑋 , ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) 〉 ∈ ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ) | |
| 62 | haustop | ⊢ ( 𝐾 ∈ Haus → 𝐾 ∈ Top ) | |
| 63 | 4 62 | syl | ⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 64 | 63 | adantr | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → 𝐾 ∈ Top ) |
| 65 | 1 2 | cnextfval | ⊢ ( ( ( 𝐽 ∈ Top ∧ 𝐾 ∈ Top ) ∧ ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ 𝐴 ⊆ 𝐶 ) ) → ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) = ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) |
| 66 | 9 64 11 12 65 | syl22anc | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) = ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) |
| 67 | 66 | eleq2d | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 〈 𝑋 , ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) 〉 ∈ ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ↔ 〈 𝑋 , ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) 〉 ∈ ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) ) |
| 68 | 61 67 | bitrid | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( 𝑋 ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ↔ 〈 𝑋 , ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) 〉 ∈ ∪ 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ( { 𝑥 } × ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) ) |
| 69 | 60 68 | mpbird | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → 𝑋 ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) |
| 70 | funbrfv | ⊢ ( Fun ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) → ( 𝑋 ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) → ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑋 ) = ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) ) | |
| 71 | 14 69 70 | sylc | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐶 ) → ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑋 ) = ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑋 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) |