This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: F and its extension by continuity agree on the domain of F . (Contributed by Thierry Arnoux, 17-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnextf.1 | ⊢ 𝐶 = ∪ 𝐽 | |
| cnextf.2 | ⊢ 𝐵 = ∪ 𝐾 | ||
| cnextf.3 | ⊢ ( 𝜑 → 𝐽 ∈ Top ) | ||
| cnextf.4 | ⊢ ( 𝜑 → 𝐾 ∈ Haus ) | ||
| cnextf.5 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | ||
| cnextf.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) | ||
| cnextf.6 | ⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝐶 ) | ||
| cnextf.7 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ) | ||
| cnextcn.8 | ⊢ ( 𝜑 → 𝐾 ∈ Reg ) | ||
| cnextfres1.1 | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) ) | ||
| Assertion | cnextfres1 | ⊢ ( 𝜑 → ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ↾ 𝐴 ) = 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnextf.1 | ⊢ 𝐶 = ∪ 𝐽 | |
| 2 | cnextf.2 | ⊢ 𝐵 = ∪ 𝐾 | |
| 3 | cnextf.3 | ⊢ ( 𝜑 → 𝐽 ∈ Top ) | |
| 4 | cnextf.4 | ⊢ ( 𝜑 → 𝐾 ∈ Haus ) | |
| 5 | cnextf.5 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 6 | cnextf.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) | |
| 7 | cnextf.6 | ⊢ ( 𝜑 → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝐶 ) | |
| 8 | cnextf.7 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ) | |
| 9 | cnextcn.8 | ⊢ ( 𝜑 → 𝐾 ∈ Reg ) | |
| 10 | cnextfres1.1 | ⊢ ( 𝜑 → 𝐹 ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) ) | |
| 11 | 1 2 3 4 5 6 7 8 | cnextf | ⊢ ( 𝜑 → ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) : 𝐶 ⟶ 𝐵 ) |
| 12 | 11 | ffnd | ⊢ ( 𝜑 → ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) Fn 𝐶 ) |
| 13 | fnssres | ⊢ ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) Fn 𝐶 ∧ 𝐴 ⊆ 𝐶 ) → ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ↾ 𝐴 ) Fn 𝐴 ) | |
| 14 | 12 6 13 | syl2anc | ⊢ ( 𝜑 → ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ↾ 𝐴 ) Fn 𝐴 ) |
| 15 | 5 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 16 | fvres | ⊢ ( 𝑦 ∈ 𝐴 → ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ↾ 𝐴 ) ‘ 𝑦 ) = ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑦 ) ) | |
| 17 | 16 | adantl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ↾ 𝐴 ) ‘ 𝑦 ) = ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑦 ) ) |
| 18 | 6 | sselda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐶 ) |
| 19 | 1 2 3 4 5 6 7 8 | cnextfvval | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑦 ) = ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) |
| 20 | 18 19 | syldan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ‘ 𝑦 ) = ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) |
| 21 | 5 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ) |
| 22 | simpr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) | |
| 23 | 1 | restuni | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐶 ) → 𝐴 = ∪ ( 𝐽 ↾t 𝐴 ) ) |
| 24 | 3 6 23 | syl2anc | ⊢ ( 𝜑 → 𝐴 = ∪ ( 𝐽 ↾t 𝐴 ) ) |
| 25 | 24 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝐴 = ∪ ( 𝐽 ↾t 𝐴 ) ) |
| 26 | 22 25 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ∪ ( 𝐽 ↾t 𝐴 ) ) |
| 27 | fvex | ⊢ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ∈ V | |
| 28 | 7 27 | eqeltrrdi | ⊢ ( 𝜑 → 𝐶 ∈ V ) |
| 29 | 28 6 | ssexd | ⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 30 | resttop | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ∈ V ) → ( 𝐽 ↾t 𝐴 ) ∈ Top ) | |
| 31 | 3 29 30 | syl2anc | ⊢ ( 𝜑 → ( 𝐽 ↾t 𝐴 ) ∈ Top ) |
| 32 | haustop | ⊢ ( 𝐾 ∈ Haus → 𝐾 ∈ Top ) | |
| 33 | 4 32 | syl | ⊢ ( 𝜑 → 𝐾 ∈ Top ) |
| 34 | 24 | feq2d | ⊢ ( 𝜑 → ( 𝐹 : 𝐴 ⟶ 𝐵 ↔ 𝐹 : ∪ ( 𝐽 ↾t 𝐴 ) ⟶ 𝐵 ) ) |
| 35 | 5 34 | mpbid | ⊢ ( 𝜑 → 𝐹 : ∪ ( 𝐽 ↾t 𝐴 ) ⟶ 𝐵 ) |
| 36 | eqid | ⊢ ∪ ( 𝐽 ↾t 𝐴 ) = ∪ ( 𝐽 ↾t 𝐴 ) | |
| 37 | 36 2 | cnnei | ⊢ ( ( ( 𝐽 ↾t 𝐴 ) ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹 : ∪ ( 𝐽 ↾t 𝐴 ) ⟶ 𝐵 ) → ( 𝐹 ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) ↔ ∀ 𝑦 ∈ ∪ ( 𝐽 ↾t 𝐴 ) ∀ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝑦 ) } ) ∃ 𝑣 ∈ ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ( 𝐹 “ 𝑣 ) ⊆ 𝑤 ) ) |
| 38 | 31 33 35 37 | syl3anc | ⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝐽 ↾t 𝐴 ) Cn 𝐾 ) ↔ ∀ 𝑦 ∈ ∪ ( 𝐽 ↾t 𝐴 ) ∀ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝑦 ) } ) ∃ 𝑣 ∈ ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ( 𝐹 “ 𝑣 ) ⊆ 𝑤 ) ) |
| 39 | 10 38 | mpbid | ⊢ ( 𝜑 → ∀ 𝑦 ∈ ∪ ( 𝐽 ↾t 𝐴 ) ∀ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝑦 ) } ) ∃ 𝑣 ∈ ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ( 𝐹 “ 𝑣 ) ⊆ 𝑤 ) |
| 40 | 39 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ∪ ( 𝐽 ↾t 𝐴 ) ) → ∀ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝑦 ) } ) ∃ 𝑣 ∈ ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ( 𝐹 “ 𝑣 ) ⊆ 𝑤 ) |
| 41 | 26 40 | syldan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ∀ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝑦 ) } ) ∃ 𝑣 ∈ ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ( 𝐹 “ 𝑣 ) ⊆ 𝑤 ) |
| 42 | 41 | r19.21bi | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝑦 ) } ) ) → ∃ 𝑣 ∈ ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ( 𝐹 “ 𝑣 ) ⊆ 𝑤 ) |
| 43 | snssi | ⊢ ( 𝑦 ∈ 𝐴 → { 𝑦 } ⊆ 𝐴 ) | |
| 44 | 1 | neitr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ 𝐶 ∧ { 𝑦 } ⊆ 𝐴 ) → ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) = ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) |
| 45 | 3 6 43 44 | syl2an3an | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) = ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) |
| 46 | 45 | rexeqdv | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ∃ 𝑣 ∈ ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ( 𝐹 “ 𝑣 ) ⊆ 𝑤 ↔ ∃ 𝑣 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ( 𝐹 “ 𝑣 ) ⊆ 𝑤 ) ) |
| 47 | 46 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝑦 ) } ) ) → ( ∃ 𝑣 ∈ ( ( nei ‘ ( 𝐽 ↾t 𝐴 ) ) ‘ { 𝑦 } ) ( 𝐹 “ 𝑣 ) ⊆ 𝑤 ↔ ∃ 𝑣 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ( 𝐹 “ 𝑣 ) ⊆ 𝑤 ) ) |
| 48 | 42 47 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝑦 ) } ) ) → ∃ 𝑣 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ( 𝐹 “ 𝑣 ) ⊆ 𝑤 ) |
| 49 | 48 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ∀ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝑦 ) } ) ∃ 𝑣 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ( 𝐹 “ 𝑣 ) ⊆ 𝑤 ) |
| 50 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝐾 ∈ Haus ) |
| 51 | 2 | toptopon | ⊢ ( 𝐾 ∈ Top ↔ 𝐾 ∈ ( TopOn ‘ 𝐵 ) ) |
| 52 | 51 | biimpi | ⊢ ( 𝐾 ∈ Top → 𝐾 ∈ ( TopOn ‘ 𝐵 ) ) |
| 53 | 50 32 52 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝐾 ∈ ( TopOn ‘ 𝐵 ) ) |
| 54 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) = 𝐶 ) |
| 55 | 18 54 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ) |
| 56 | 1 | toptopon | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝐶 ) ) |
| 57 | 3 56 | sylib | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝐶 ) ) |
| 58 | 57 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝐽 ∈ ( TopOn ‘ 𝐶 ) ) |
| 59 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝐴 ⊆ 𝐶 ) |
| 60 | trnei | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝐶 ) ∧ 𝐴 ⊆ 𝐶 ∧ 𝑦 ∈ 𝐶 ) → ( 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ) ) | |
| 61 | 58 59 18 60 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ) ) |
| 62 | 55 61 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ) |
| 63 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 64 | flfnei | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝐵 ) ∧ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ( 𝐹 ‘ 𝑦 ) ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ↔ ( ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝑦 ) } ) ∃ 𝑣 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ( 𝐹 “ 𝑣 ) ⊆ 𝑤 ) ) ) | |
| 65 | 53 62 63 64 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑦 ) ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ↔ ( ( 𝐹 ‘ 𝑦 ) ∈ 𝐵 ∧ ∀ 𝑤 ∈ ( ( nei ‘ 𝐾 ) ‘ { ( 𝐹 ‘ 𝑦 ) } ) ∃ 𝑣 ∈ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ( 𝐹 “ 𝑣 ) ⊆ 𝑤 ) ) ) |
| 66 | 21 49 65 | mpbir2and | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) |
| 67 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐶 ↔ 𝑦 ∈ 𝐶 ) ) | |
| 68 | 67 | anbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) ↔ ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) ) ) |
| 69 | sneq | ⊢ ( 𝑥 = 𝑦 → { 𝑥 } = { 𝑦 } ) | |
| 70 | 69 | fveq2d | ⊢ ( 𝑥 = 𝑦 → ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) = ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ) |
| 71 | 70 | oveq1d | ⊢ ( 𝑥 = 𝑦 → ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) = ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) |
| 72 | 71 | oveq2d | ⊢ ( 𝑥 = 𝑦 → ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) = ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ) |
| 73 | 72 | fveq1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) = ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ) |
| 74 | 73 | neeq1d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ↔ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ) ) |
| 75 | 68 74 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ) ↔ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ) ) ) |
| 76 | 75 8 | chvarvv | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐶 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ) |
| 77 | 18 76 | syldan | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ) |
| 78 | 2 | hausflf2 | ⊢ ( ( ( 𝐾 ∈ Haus ∧ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≠ ∅ ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≈ 1o ) |
| 79 | 50 62 63 77 78 | syl31anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≈ 1o ) |
| 80 | en1eqsn | ⊢ ( ( ( 𝐹 ‘ 𝑦 ) ∈ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ∧ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) ≈ 1o ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) = { ( 𝐹 ‘ 𝑦 ) } ) | |
| 81 | 66 79 80 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) = { ( 𝐹 ‘ 𝑦 ) } ) |
| 82 | 81 | unieqd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) = ∪ { ( 𝐹 ‘ 𝑦 ) } ) |
| 83 | fvex | ⊢ ( 𝐹 ‘ 𝑦 ) ∈ V | |
| 84 | 83 | unisn | ⊢ ∪ { ( 𝐹 ‘ 𝑦 ) } = ( 𝐹 ‘ 𝑦 ) |
| 85 | 82 84 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ∪ ( ( 𝐾 fLimf ( ( ( nei ‘ 𝐽 ) ‘ { 𝑦 } ) ↾t 𝐴 ) ) ‘ 𝐹 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 86 | 17 20 85 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ↾ 𝐴 ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 87 | 14 15 86 | eqfnfvd | ⊢ ( 𝜑 → ( ( ( 𝐽 CnExt 𝐾 ) ‘ 𝐹 ) ↾ 𝐴 ) = 𝐹 ) |