This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A filter generates itself. (Contributed by Jeff Hankins, 5-Sep-2009) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fgfil | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑋 filGen 𝐹 ) = 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | filfbas | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) | |
| 2 | elfg | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐹 ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ) ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐹 ) ↔ ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ) ) ) |
| 4 | filss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝐹 ∧ 𝑡 ⊆ 𝑋 ∧ 𝑥 ⊆ 𝑡 ) ) → 𝑡 ∈ 𝐹 ) | |
| 5 | 4 | 3exp2 | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥 ∈ 𝐹 → ( 𝑡 ⊆ 𝑋 → ( 𝑥 ⊆ 𝑡 → 𝑡 ∈ 𝐹 ) ) ) ) |
| 6 | 5 | com34 | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑥 ∈ 𝐹 → ( 𝑥 ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐹 ) ) ) ) |
| 7 | 6 | rexlimdv | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 → ( 𝑡 ⊆ 𝑋 → 𝑡 ∈ 𝐹 ) ) ) |
| 8 | 7 | impcomd | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( ( 𝑡 ⊆ 𝑋 ∧ ∃ 𝑥 ∈ 𝐹 𝑥 ⊆ 𝑡 ) → 𝑡 ∈ 𝐹 ) ) |
| 9 | 3 8 | sylbid | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑡 ∈ ( 𝑋 filGen 𝐹 ) → 𝑡 ∈ 𝐹 ) ) |
| 10 | 9 | ssrdv | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑋 filGen 𝐹 ) ⊆ 𝐹 ) |
| 11 | ssfg | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) → 𝐹 ⊆ ( 𝑋 filGen 𝐹 ) ) | |
| 12 | 1 11 | syl | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → 𝐹 ⊆ ( 𝑋 filGen 𝐹 ) ) |
| 13 | 10 12 | eqssd | ⊢ ( 𝐹 ∈ ( Fil ‘ 𝑋 ) → ( 𝑋 filGen 𝐹 ) = 𝐹 ) |