This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The trace, over a set A , of the filter of the neighborhoods of a point P is a filter iff P belongs to the closure of A . (This is trfil2 applied to a filter of neighborhoods.) (Contributed by FL, 15-Sep-2013) (Revised by Stefan O'Rear, 2-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | trnei | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑌 ) → 𝐽 ∈ Top ) | |
| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌 ) → 𝐽 ∈ Top ) |
| 3 | simp2 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌 ) → 𝐴 ⊆ 𝑌 ) | |
| 4 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑌 ) → 𝑌 = ∪ 𝐽 ) | |
| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌 ) → 𝑌 = ∪ 𝐽 ) |
| 6 | 3 5 | sseqtrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌 ) → 𝐴 ⊆ ∪ 𝐽 ) |
| 7 | simp3 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌 ) → 𝑃 ∈ 𝑌 ) | |
| 8 | 7 5 | eleqtrd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌 ) → 𝑃 ∈ ∪ 𝐽 ) |
| 9 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 10 | 9 | neindisj2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐴 ⊆ ∪ 𝐽 ∧ 𝑃 ∈ ∪ 𝐽 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ ∀ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑣 ∩ 𝐴 ) ≠ ∅ ) ) |
| 11 | 2 6 8 10 | syl3anc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ ∀ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑣 ∩ 𝐴 ) ≠ ∅ ) ) |
| 12 | simp1 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌 ) → 𝐽 ∈ ( TopOn ‘ 𝑌 ) ) | |
| 13 | 7 | snssd | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌 ) → { 𝑃 } ⊆ 𝑌 ) |
| 14 | snnzg | ⊢ ( 𝑃 ∈ 𝑌 → { 𝑃 } ≠ ∅ ) | |
| 15 | 14 | 3ad2ant3 | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌 ) → { 𝑃 } ≠ ∅ ) |
| 16 | neifil | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑌 ) ∧ { 𝑃 } ⊆ 𝑌 ∧ { 𝑃 } ≠ ∅ ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∈ ( Fil ‘ 𝑌 ) ) | |
| 17 | 12 13 15 16 | syl3anc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌 ) → ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∈ ( Fil ‘ 𝑌 ) ) |
| 18 | trfil2 | ⊢ ( ( ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ∈ ( Fil ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ) → ( ( ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ↔ ∀ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑣 ∩ 𝐴 ) ≠ ∅ ) ) | |
| 19 | 17 3 18 | syl2anc | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌 ) → ( ( ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ↔ ∀ 𝑣 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ( 𝑣 ∩ 𝐴 ) ≠ ∅ ) ) |
| 20 | 11 19 | bitr4d | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐴 ⊆ 𝑌 ∧ 𝑃 ∈ 𝑌 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝐴 ) ↔ ( ( ( nei ‘ 𝐽 ) ‘ { 𝑃 } ) ↾t 𝐴 ) ∈ ( Fil ‘ 𝐴 ) ) ) |