This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The convergent points of a filter are a subset of the closure of any of the filter sets. (Contributed by Mario Carneiro, 9-Apr-2015) (Revised by Stefan O'Rear, 9-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | flimclsi | ⊢ ( 𝑆 ∈ 𝐹 → ( 𝐽 fLim 𝐹 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | flimfil | ⊢ ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) → 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) |
| 3 | 2 | ad2antlr | ⊢ ( ( ( 𝑆 ∈ 𝐹 ∧ 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) → 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) |
| 4 | flimnei | ⊢ ( ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) → 𝑦 ∈ 𝐹 ) | |
| 5 | 4 | adantll | ⊢ ( ( ( 𝑆 ∈ 𝐹 ∧ 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) → 𝑦 ∈ 𝐹 ) |
| 6 | simpll | ⊢ ( ( ( 𝑆 ∈ 𝐹 ∧ 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) → 𝑆 ∈ 𝐹 ) | |
| 7 | filinn0 | ⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ∧ 𝑦 ∈ 𝐹 ∧ 𝑆 ∈ 𝐹 ) → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) | |
| 8 | 3 5 6 7 | syl3anc | ⊢ ( ( ( 𝑆 ∈ 𝐹 ∧ 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) ∧ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ) → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) |
| 9 | 8 | ralrimiva | ⊢ ( ( 𝑆 ∈ 𝐹 ∧ 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) → ∀ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) |
| 10 | flimtop | ⊢ ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) → 𝐽 ∈ Top ) | |
| 11 | 10 | adantl | ⊢ ( ( 𝑆 ∈ 𝐹 ∧ 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) → 𝐽 ∈ Top ) |
| 12 | filelss | ⊢ ( ( 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ∧ 𝑆 ∈ 𝐹 ) → 𝑆 ⊆ ∪ 𝐽 ) | |
| 13 | 12 | ancoms | ⊢ ( ( 𝑆 ∈ 𝐹 ∧ 𝐹 ∈ ( Fil ‘ ∪ 𝐽 ) ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 14 | 2 13 | sylan2 | ⊢ ( ( 𝑆 ∈ 𝐹 ∧ 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) → 𝑆 ⊆ ∪ 𝐽 ) |
| 15 | 1 | flimelbas | ⊢ ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) → 𝑥 ∈ ∪ 𝐽 ) |
| 16 | 15 | adantl | ⊢ ( ( 𝑆 ∈ 𝐹 ∧ 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) → 𝑥 ∈ ∪ 𝐽 ) |
| 17 | 1 | neindisj2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ ∪ 𝐽 ∧ 𝑥 ∈ ∪ 𝐽 ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∀ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ) |
| 18 | 11 14 16 17 | syl3anc | ⊢ ( ( 𝑆 ∈ 𝐹 ∧ 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) → ( 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∀ 𝑦 ∈ ( ( nei ‘ 𝐽 ) ‘ { 𝑥 } ) ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ) |
| 19 | 9 18 | mpbird | ⊢ ( ( 𝑆 ∈ 𝐹 ∧ 𝑥 ∈ ( 𝐽 fLim 𝐹 ) ) → 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 20 | 19 | ex | ⊢ ( 𝑆 ∈ 𝐹 → ( 𝑥 ∈ ( 𝐽 fLim 𝐹 ) → 𝑥 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 21 | 20 | ssrdv | ⊢ ( 𝑆 ∈ 𝐹 → ( 𝐽 fLim 𝐹 ) ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |