This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a regular space, every neighborhood of a point contains a closed subneighborhood. (Contributed by Mario Carneiro, 25-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | regsep | ⊢ ( ( 𝐽 ∈ Reg ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈 ) → ∃ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isreg | ⊢ ( 𝐽 ∈ Reg ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑦 ∈ 𝐽 ∀ 𝑧 ∈ 𝑦 ∃ 𝑥 ∈ 𝐽 ( 𝑧 ∈ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑦 ) ) ) | |
| 2 | sseq2 | ⊢ ( 𝑦 = 𝑈 → ( ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑦 ↔ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑈 ) ) | |
| 3 | 2 | anbi2d | ⊢ ( 𝑦 = 𝑈 → ( ( 𝑧 ∈ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑦 ) ↔ ( 𝑧 ∈ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑈 ) ) ) |
| 4 | 3 | rexbidv | ⊢ ( 𝑦 = 𝑈 → ( ∃ 𝑥 ∈ 𝐽 ( 𝑧 ∈ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑦 ) ↔ ∃ 𝑥 ∈ 𝐽 ( 𝑧 ∈ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑈 ) ) ) |
| 5 | 4 | raleqbi1dv | ⊢ ( 𝑦 = 𝑈 → ( ∀ 𝑧 ∈ 𝑦 ∃ 𝑥 ∈ 𝐽 ( 𝑧 ∈ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑦 ) ↔ ∀ 𝑧 ∈ 𝑈 ∃ 𝑥 ∈ 𝐽 ( 𝑧 ∈ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑈 ) ) ) |
| 6 | 5 | rspccv | ⊢ ( ∀ 𝑦 ∈ 𝐽 ∀ 𝑧 ∈ 𝑦 ∃ 𝑥 ∈ 𝐽 ( 𝑧 ∈ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑦 ) → ( 𝑈 ∈ 𝐽 → ∀ 𝑧 ∈ 𝑈 ∃ 𝑥 ∈ 𝐽 ( 𝑧 ∈ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑈 ) ) ) |
| 7 | 1 6 | simplbiim | ⊢ ( 𝐽 ∈ Reg → ( 𝑈 ∈ 𝐽 → ∀ 𝑧 ∈ 𝑈 ∃ 𝑥 ∈ 𝐽 ( 𝑧 ∈ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑈 ) ) ) |
| 8 | eleq1 | ⊢ ( 𝑧 = 𝐴 → ( 𝑧 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥 ) ) | |
| 9 | 8 | anbi1d | ⊢ ( 𝑧 = 𝐴 → ( ( 𝑧 ∈ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑈 ) ↔ ( 𝐴 ∈ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑈 ) ) ) |
| 10 | 9 | rexbidv | ⊢ ( 𝑧 = 𝐴 → ( ∃ 𝑥 ∈ 𝐽 ( 𝑧 ∈ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑈 ) ↔ ∃ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑈 ) ) ) |
| 11 | 10 | rspccv | ⊢ ( ∀ 𝑧 ∈ 𝑈 ∃ 𝑥 ∈ 𝐽 ( 𝑧 ∈ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑈 ) → ( 𝐴 ∈ 𝑈 → ∃ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑈 ) ) ) |
| 12 | 7 11 | syl6 | ⊢ ( 𝐽 ∈ Reg → ( 𝑈 ∈ 𝐽 → ( 𝐴 ∈ 𝑈 → ∃ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑈 ) ) ) ) |
| 13 | 12 | 3imp | ⊢ ( ( 𝐽 ∈ Reg ∧ 𝑈 ∈ 𝐽 ∧ 𝐴 ∈ 𝑈 ) → ∃ 𝑥 ∈ 𝐽 ( 𝐴 ∈ 𝑥 ∧ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ⊆ 𝑈 ) ) |