This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for sylow1 . The p-adic valuation of the size of S is equal to the number of excess powers of P in ( #X ) / ( P ^ N ) . (Contributed by Mario Carneiro, 15-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sylow1.x | |- X = ( Base ` G ) |
|
| sylow1.g | |- ( ph -> G e. Grp ) |
||
| sylow1.f | |- ( ph -> X e. Fin ) |
||
| sylow1.p | |- ( ph -> P e. Prime ) |
||
| sylow1.n | |- ( ph -> N e. NN0 ) |
||
| sylow1.d | |- ( ph -> ( P ^ N ) || ( # ` X ) ) |
||
| sylow1lem.a | |- .+ = ( +g ` G ) |
||
| sylow1lem.s | |- S = { s e. ~P X | ( # ` s ) = ( P ^ N ) } |
||
| Assertion | sylow1lem1 | |- ( ph -> ( ( # ` S ) e. NN /\ ( P pCnt ( # ` S ) ) = ( ( P pCnt ( # ` X ) ) - N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylow1.x | |- X = ( Base ` G ) |
|
| 2 | sylow1.g | |- ( ph -> G e. Grp ) |
|
| 3 | sylow1.f | |- ( ph -> X e. Fin ) |
|
| 4 | sylow1.p | |- ( ph -> P e. Prime ) |
|
| 5 | sylow1.n | |- ( ph -> N e. NN0 ) |
|
| 6 | sylow1.d | |- ( ph -> ( P ^ N ) || ( # ` X ) ) |
|
| 7 | sylow1lem.a | |- .+ = ( +g ` G ) |
|
| 8 | sylow1lem.s | |- S = { s e. ~P X | ( # ` s ) = ( P ^ N ) } |
|
| 9 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 10 | 4 9 | syl | |- ( ph -> P e. NN ) |
| 11 | 10 5 | nnexpcld | |- ( ph -> ( P ^ N ) e. NN ) |
| 12 | 11 | nnzd | |- ( ph -> ( P ^ N ) e. ZZ ) |
| 13 | hashbc | |- ( ( X e. Fin /\ ( P ^ N ) e. ZZ ) -> ( ( # ` X ) _C ( P ^ N ) ) = ( # ` { s e. ~P X | ( # ` s ) = ( P ^ N ) } ) ) |
|
| 14 | 3 12 13 | syl2anc | |- ( ph -> ( ( # ` X ) _C ( P ^ N ) ) = ( # ` { s e. ~P X | ( # ` s ) = ( P ^ N ) } ) ) |
| 15 | 8 | fveq2i | |- ( # ` S ) = ( # ` { s e. ~P X | ( # ` s ) = ( P ^ N ) } ) |
| 16 | 14 15 | eqtr4di | |- ( ph -> ( ( # ` X ) _C ( P ^ N ) ) = ( # ` S ) ) |
| 17 | 1 | grpbn0 | |- ( G e. Grp -> X =/= (/) ) |
| 18 | 2 17 | syl | |- ( ph -> X =/= (/) ) |
| 19 | hasheq0 | |- ( X e. Fin -> ( ( # ` X ) = 0 <-> X = (/) ) ) |
|
| 20 | 3 19 | syl | |- ( ph -> ( ( # ` X ) = 0 <-> X = (/) ) ) |
| 21 | 20 | necon3bbid | |- ( ph -> ( -. ( # ` X ) = 0 <-> X =/= (/) ) ) |
| 22 | 18 21 | mpbird | |- ( ph -> -. ( # ` X ) = 0 ) |
| 23 | hashcl | |- ( X e. Fin -> ( # ` X ) e. NN0 ) |
|
| 24 | 3 23 | syl | |- ( ph -> ( # ` X ) e. NN0 ) |
| 25 | elnn0 | |- ( ( # ` X ) e. NN0 <-> ( ( # ` X ) e. NN \/ ( # ` X ) = 0 ) ) |
|
| 26 | 24 25 | sylib | |- ( ph -> ( ( # ` X ) e. NN \/ ( # ` X ) = 0 ) ) |
| 27 | 26 | ord | |- ( ph -> ( -. ( # ` X ) e. NN -> ( # ` X ) = 0 ) ) |
| 28 | 22 27 | mt3d | |- ( ph -> ( # ` X ) e. NN ) |
| 29 | dvdsle | |- ( ( ( P ^ N ) e. ZZ /\ ( # ` X ) e. NN ) -> ( ( P ^ N ) || ( # ` X ) -> ( P ^ N ) <_ ( # ` X ) ) ) |
|
| 30 | 12 28 29 | syl2anc | |- ( ph -> ( ( P ^ N ) || ( # ` X ) -> ( P ^ N ) <_ ( # ` X ) ) ) |
| 31 | 6 30 | mpd | |- ( ph -> ( P ^ N ) <_ ( # ` X ) ) |
| 32 | 11 | nnnn0d | |- ( ph -> ( P ^ N ) e. NN0 ) |
| 33 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 34 | 32 33 | eleqtrdi | |- ( ph -> ( P ^ N ) e. ( ZZ>= ` 0 ) ) |
| 35 | 24 | nn0zd | |- ( ph -> ( # ` X ) e. ZZ ) |
| 36 | elfz5 | |- ( ( ( P ^ N ) e. ( ZZ>= ` 0 ) /\ ( # ` X ) e. ZZ ) -> ( ( P ^ N ) e. ( 0 ... ( # ` X ) ) <-> ( P ^ N ) <_ ( # ` X ) ) ) |
|
| 37 | 34 35 36 | syl2anc | |- ( ph -> ( ( P ^ N ) e. ( 0 ... ( # ` X ) ) <-> ( P ^ N ) <_ ( # ` X ) ) ) |
| 38 | 31 37 | mpbird | |- ( ph -> ( P ^ N ) e. ( 0 ... ( # ` X ) ) ) |
| 39 | bccl2 | |- ( ( P ^ N ) e. ( 0 ... ( # ` X ) ) -> ( ( # ` X ) _C ( P ^ N ) ) e. NN ) |
|
| 40 | 38 39 | syl | |- ( ph -> ( ( # ` X ) _C ( P ^ N ) ) e. NN ) |
| 41 | 16 40 | eqeltrrd | |- ( ph -> ( # ` S ) e. NN ) |
| 42 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 43 | 11 42 | eleqtrdi | |- ( ph -> ( P ^ N ) e. ( ZZ>= ` 1 ) ) |
| 44 | elfz5 | |- ( ( ( P ^ N ) e. ( ZZ>= ` 1 ) /\ ( # ` X ) e. ZZ ) -> ( ( P ^ N ) e. ( 1 ... ( # ` X ) ) <-> ( P ^ N ) <_ ( # ` X ) ) ) |
|
| 45 | 43 35 44 | syl2anc | |- ( ph -> ( ( P ^ N ) e. ( 1 ... ( # ` X ) ) <-> ( P ^ N ) <_ ( # ` X ) ) ) |
| 46 | 31 45 | mpbird | |- ( ph -> ( P ^ N ) e. ( 1 ... ( # ` X ) ) ) |
| 47 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 48 | fzsubel | |- ( ( ( 1 e. ZZ /\ ( # ` X ) e. ZZ ) /\ ( ( P ^ N ) e. ZZ /\ 1 e. ZZ ) ) -> ( ( P ^ N ) e. ( 1 ... ( # ` X ) ) <-> ( ( P ^ N ) - 1 ) e. ( ( 1 - 1 ) ... ( ( # ` X ) - 1 ) ) ) ) |
|
| 49 | 47 35 12 47 48 | syl22anc | |- ( ph -> ( ( P ^ N ) e. ( 1 ... ( # ` X ) ) <-> ( ( P ^ N ) - 1 ) e. ( ( 1 - 1 ) ... ( ( # ` X ) - 1 ) ) ) ) |
| 50 | 46 49 | mpbid | |- ( ph -> ( ( P ^ N ) - 1 ) e. ( ( 1 - 1 ) ... ( ( # ` X ) - 1 ) ) ) |
| 51 | 1m1e0 | |- ( 1 - 1 ) = 0 |
|
| 52 | 51 | oveq1i | |- ( ( 1 - 1 ) ... ( ( # ` X ) - 1 ) ) = ( 0 ... ( ( # ` X ) - 1 ) ) |
| 53 | 50 52 | eleqtrdi | |- ( ph -> ( ( P ^ N ) - 1 ) e. ( 0 ... ( ( # ` X ) - 1 ) ) ) |
| 54 | bcp1nk | |- ( ( ( P ^ N ) - 1 ) e. ( 0 ... ( ( # ` X ) - 1 ) ) -> ( ( ( ( # ` X ) - 1 ) + 1 ) _C ( ( ( P ^ N ) - 1 ) + 1 ) ) = ( ( ( ( # ` X ) - 1 ) _C ( ( P ^ N ) - 1 ) ) x. ( ( ( ( # ` X ) - 1 ) + 1 ) / ( ( ( P ^ N ) - 1 ) + 1 ) ) ) ) |
|
| 55 | 53 54 | syl | |- ( ph -> ( ( ( ( # ` X ) - 1 ) + 1 ) _C ( ( ( P ^ N ) - 1 ) + 1 ) ) = ( ( ( ( # ` X ) - 1 ) _C ( ( P ^ N ) - 1 ) ) x. ( ( ( ( # ` X ) - 1 ) + 1 ) / ( ( ( P ^ N ) - 1 ) + 1 ) ) ) ) |
| 56 | 24 | nn0cnd | |- ( ph -> ( # ` X ) e. CC ) |
| 57 | ax-1cn | |- 1 e. CC |
|
| 58 | npcan | |- ( ( ( # ` X ) e. CC /\ 1 e. CC ) -> ( ( ( # ` X ) - 1 ) + 1 ) = ( # ` X ) ) |
|
| 59 | 56 57 58 | sylancl | |- ( ph -> ( ( ( # ` X ) - 1 ) + 1 ) = ( # ` X ) ) |
| 60 | 11 | nncnd | |- ( ph -> ( P ^ N ) e. CC ) |
| 61 | npcan | |- ( ( ( P ^ N ) e. CC /\ 1 e. CC ) -> ( ( ( P ^ N ) - 1 ) + 1 ) = ( P ^ N ) ) |
|
| 62 | 60 57 61 | sylancl | |- ( ph -> ( ( ( P ^ N ) - 1 ) + 1 ) = ( P ^ N ) ) |
| 63 | 59 62 | oveq12d | |- ( ph -> ( ( ( ( # ` X ) - 1 ) + 1 ) _C ( ( ( P ^ N ) - 1 ) + 1 ) ) = ( ( # ` X ) _C ( P ^ N ) ) ) |
| 64 | 59 62 | oveq12d | |- ( ph -> ( ( ( ( # ` X ) - 1 ) + 1 ) / ( ( ( P ^ N ) - 1 ) + 1 ) ) = ( ( # ` X ) / ( P ^ N ) ) ) |
| 65 | 64 | oveq2d | |- ( ph -> ( ( ( ( # ` X ) - 1 ) _C ( ( P ^ N ) - 1 ) ) x. ( ( ( ( # ` X ) - 1 ) + 1 ) / ( ( ( P ^ N ) - 1 ) + 1 ) ) ) = ( ( ( ( # ` X ) - 1 ) _C ( ( P ^ N ) - 1 ) ) x. ( ( # ` X ) / ( P ^ N ) ) ) ) |
| 66 | 55 63 65 | 3eqtr3d | |- ( ph -> ( ( # ` X ) _C ( P ^ N ) ) = ( ( ( ( # ` X ) - 1 ) _C ( ( P ^ N ) - 1 ) ) x. ( ( # ` X ) / ( P ^ N ) ) ) ) |
| 67 | 66 | oveq2d | |- ( ph -> ( P pCnt ( ( # ` X ) _C ( P ^ N ) ) ) = ( P pCnt ( ( ( ( # ` X ) - 1 ) _C ( ( P ^ N ) - 1 ) ) x. ( ( # ` X ) / ( P ^ N ) ) ) ) ) |
| 68 | 16 | oveq2d | |- ( ph -> ( P pCnt ( ( # ` X ) _C ( P ^ N ) ) ) = ( P pCnt ( # ` S ) ) ) |
| 69 | bccl2 | |- ( ( ( P ^ N ) - 1 ) e. ( 0 ... ( ( # ` X ) - 1 ) ) -> ( ( ( # ` X ) - 1 ) _C ( ( P ^ N ) - 1 ) ) e. NN ) |
|
| 70 | 53 69 | syl | |- ( ph -> ( ( ( # ` X ) - 1 ) _C ( ( P ^ N ) - 1 ) ) e. NN ) |
| 71 | 70 | nnzd | |- ( ph -> ( ( ( # ` X ) - 1 ) _C ( ( P ^ N ) - 1 ) ) e. ZZ ) |
| 72 | 70 | nnne0d | |- ( ph -> ( ( ( # ` X ) - 1 ) _C ( ( P ^ N ) - 1 ) ) =/= 0 ) |
| 73 | 11 | nnne0d | |- ( ph -> ( P ^ N ) =/= 0 ) |
| 74 | dvdsval2 | |- ( ( ( P ^ N ) e. ZZ /\ ( P ^ N ) =/= 0 /\ ( # ` X ) e. ZZ ) -> ( ( P ^ N ) || ( # ` X ) <-> ( ( # ` X ) / ( P ^ N ) ) e. ZZ ) ) |
|
| 75 | 12 73 35 74 | syl3anc | |- ( ph -> ( ( P ^ N ) || ( # ` X ) <-> ( ( # ` X ) / ( P ^ N ) ) e. ZZ ) ) |
| 76 | 6 75 | mpbid | |- ( ph -> ( ( # ` X ) / ( P ^ N ) ) e. ZZ ) |
| 77 | 28 | nnne0d | |- ( ph -> ( # ` X ) =/= 0 ) |
| 78 | 56 60 77 73 | divne0d | |- ( ph -> ( ( # ` X ) / ( P ^ N ) ) =/= 0 ) |
| 79 | pcmul | |- ( ( P e. Prime /\ ( ( ( ( # ` X ) - 1 ) _C ( ( P ^ N ) - 1 ) ) e. ZZ /\ ( ( ( # ` X ) - 1 ) _C ( ( P ^ N ) - 1 ) ) =/= 0 ) /\ ( ( ( # ` X ) / ( P ^ N ) ) e. ZZ /\ ( ( # ` X ) / ( P ^ N ) ) =/= 0 ) ) -> ( P pCnt ( ( ( ( # ` X ) - 1 ) _C ( ( P ^ N ) - 1 ) ) x. ( ( # ` X ) / ( P ^ N ) ) ) ) = ( ( P pCnt ( ( ( # ` X ) - 1 ) _C ( ( P ^ N ) - 1 ) ) ) + ( P pCnt ( ( # ` X ) / ( P ^ N ) ) ) ) ) |
|
| 80 | 4 71 72 76 78 79 | syl122anc | |- ( ph -> ( P pCnt ( ( ( ( # ` X ) - 1 ) _C ( ( P ^ N ) - 1 ) ) x. ( ( # ` X ) / ( P ^ N ) ) ) ) = ( ( P pCnt ( ( ( # ` X ) - 1 ) _C ( ( P ^ N ) - 1 ) ) ) + ( P pCnt ( ( # ` X ) / ( P ^ N ) ) ) ) ) |
| 81 | 1cnd | |- ( ph -> 1 e. CC ) |
|
| 82 | 56 60 81 | npncand | |- ( ph -> ( ( ( # ` X ) - ( P ^ N ) ) + ( ( P ^ N ) - 1 ) ) = ( ( # ` X ) - 1 ) ) |
| 83 | 82 | oveq1d | |- ( ph -> ( ( ( ( # ` X ) - ( P ^ N ) ) + ( ( P ^ N ) - 1 ) ) _C ( ( P ^ N ) - 1 ) ) = ( ( ( # ` X ) - 1 ) _C ( ( P ^ N ) - 1 ) ) ) |
| 84 | 83 | oveq2d | |- ( ph -> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + ( ( P ^ N ) - 1 ) ) _C ( ( P ^ N ) - 1 ) ) ) = ( P pCnt ( ( ( # ` X ) - 1 ) _C ( ( P ^ N ) - 1 ) ) ) ) |
| 85 | 11 | nnred | |- ( ph -> ( P ^ N ) e. RR ) |
| 86 | 85 | ltm1d | |- ( ph -> ( ( P ^ N ) - 1 ) < ( P ^ N ) ) |
| 87 | nnm1nn0 | |- ( ( P ^ N ) e. NN -> ( ( P ^ N ) - 1 ) e. NN0 ) |
|
| 88 | 11 87 | syl | |- ( ph -> ( ( P ^ N ) - 1 ) e. NN0 ) |
| 89 | breq1 | |- ( x = 0 -> ( x < ( P ^ N ) <-> 0 < ( P ^ N ) ) ) |
|
| 90 | bcxmaslem1 | |- ( x = 0 -> ( ( ( ( # ` X ) - ( P ^ N ) ) + x ) _C x ) = ( ( ( ( # ` X ) - ( P ^ N ) ) + 0 ) _C 0 ) ) |
|
| 91 | 90 | oveq2d | |- ( x = 0 -> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + x ) _C x ) ) = ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + 0 ) _C 0 ) ) ) |
| 92 | 91 | eqeq1d | |- ( x = 0 -> ( ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + x ) _C x ) ) = 0 <-> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + 0 ) _C 0 ) ) = 0 ) ) |
| 93 | 89 92 | imbi12d | |- ( x = 0 -> ( ( x < ( P ^ N ) -> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + x ) _C x ) ) = 0 ) <-> ( 0 < ( P ^ N ) -> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + 0 ) _C 0 ) ) = 0 ) ) ) |
| 94 | 93 | imbi2d | |- ( x = 0 -> ( ( ph -> ( x < ( P ^ N ) -> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + x ) _C x ) ) = 0 ) ) <-> ( ph -> ( 0 < ( P ^ N ) -> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + 0 ) _C 0 ) ) = 0 ) ) ) ) |
| 95 | breq1 | |- ( x = n -> ( x < ( P ^ N ) <-> n < ( P ^ N ) ) ) |
|
| 96 | bcxmaslem1 | |- ( x = n -> ( ( ( ( # ` X ) - ( P ^ N ) ) + x ) _C x ) = ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) _C n ) ) |
|
| 97 | 96 | oveq2d | |- ( x = n -> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + x ) _C x ) ) = ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) _C n ) ) ) |
| 98 | 97 | eqeq1d | |- ( x = n -> ( ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + x ) _C x ) ) = 0 <-> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) _C n ) ) = 0 ) ) |
| 99 | 95 98 | imbi12d | |- ( x = n -> ( ( x < ( P ^ N ) -> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + x ) _C x ) ) = 0 ) <-> ( n < ( P ^ N ) -> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) _C n ) ) = 0 ) ) ) |
| 100 | 99 | imbi2d | |- ( x = n -> ( ( ph -> ( x < ( P ^ N ) -> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + x ) _C x ) ) = 0 ) ) <-> ( ph -> ( n < ( P ^ N ) -> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) _C n ) ) = 0 ) ) ) ) |
| 101 | breq1 | |- ( x = ( n + 1 ) -> ( x < ( P ^ N ) <-> ( n + 1 ) < ( P ^ N ) ) ) |
|
| 102 | bcxmaslem1 | |- ( x = ( n + 1 ) -> ( ( ( ( # ` X ) - ( P ^ N ) ) + x ) _C x ) = ( ( ( ( # ` X ) - ( P ^ N ) ) + ( n + 1 ) ) _C ( n + 1 ) ) ) |
|
| 103 | 102 | oveq2d | |- ( x = ( n + 1 ) -> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + x ) _C x ) ) = ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + ( n + 1 ) ) _C ( n + 1 ) ) ) ) |
| 104 | 103 | eqeq1d | |- ( x = ( n + 1 ) -> ( ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + x ) _C x ) ) = 0 <-> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + ( n + 1 ) ) _C ( n + 1 ) ) ) = 0 ) ) |
| 105 | 101 104 | imbi12d | |- ( x = ( n + 1 ) -> ( ( x < ( P ^ N ) -> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + x ) _C x ) ) = 0 ) <-> ( ( n + 1 ) < ( P ^ N ) -> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + ( n + 1 ) ) _C ( n + 1 ) ) ) = 0 ) ) ) |
| 106 | 105 | imbi2d | |- ( x = ( n + 1 ) -> ( ( ph -> ( x < ( P ^ N ) -> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + x ) _C x ) ) = 0 ) ) <-> ( ph -> ( ( n + 1 ) < ( P ^ N ) -> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + ( n + 1 ) ) _C ( n + 1 ) ) ) = 0 ) ) ) ) |
| 107 | breq1 | |- ( x = ( ( P ^ N ) - 1 ) -> ( x < ( P ^ N ) <-> ( ( P ^ N ) - 1 ) < ( P ^ N ) ) ) |
|
| 108 | bcxmaslem1 | |- ( x = ( ( P ^ N ) - 1 ) -> ( ( ( ( # ` X ) - ( P ^ N ) ) + x ) _C x ) = ( ( ( ( # ` X ) - ( P ^ N ) ) + ( ( P ^ N ) - 1 ) ) _C ( ( P ^ N ) - 1 ) ) ) |
|
| 109 | 108 | oveq2d | |- ( x = ( ( P ^ N ) - 1 ) -> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + x ) _C x ) ) = ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + ( ( P ^ N ) - 1 ) ) _C ( ( P ^ N ) - 1 ) ) ) ) |
| 110 | 109 | eqeq1d | |- ( x = ( ( P ^ N ) - 1 ) -> ( ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + x ) _C x ) ) = 0 <-> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + ( ( P ^ N ) - 1 ) ) _C ( ( P ^ N ) - 1 ) ) ) = 0 ) ) |
| 111 | 107 110 | imbi12d | |- ( x = ( ( P ^ N ) - 1 ) -> ( ( x < ( P ^ N ) -> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + x ) _C x ) ) = 0 ) <-> ( ( ( P ^ N ) - 1 ) < ( P ^ N ) -> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + ( ( P ^ N ) - 1 ) ) _C ( ( P ^ N ) - 1 ) ) ) = 0 ) ) ) |
| 112 | 111 | imbi2d | |- ( x = ( ( P ^ N ) - 1 ) -> ( ( ph -> ( x < ( P ^ N ) -> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + x ) _C x ) ) = 0 ) ) <-> ( ph -> ( ( ( P ^ N ) - 1 ) < ( P ^ N ) -> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + ( ( P ^ N ) - 1 ) ) _C ( ( P ^ N ) - 1 ) ) ) = 0 ) ) ) ) |
| 113 | znn0sub | |- ( ( ( P ^ N ) e. ZZ /\ ( # ` X ) e. ZZ ) -> ( ( P ^ N ) <_ ( # ` X ) <-> ( ( # ` X ) - ( P ^ N ) ) e. NN0 ) ) |
|
| 114 | 12 35 113 | syl2anc | |- ( ph -> ( ( P ^ N ) <_ ( # ` X ) <-> ( ( # ` X ) - ( P ^ N ) ) e. NN0 ) ) |
| 115 | 31 114 | mpbid | |- ( ph -> ( ( # ` X ) - ( P ^ N ) ) e. NN0 ) |
| 116 | 0nn0 | |- 0 e. NN0 |
|
| 117 | nn0addcl | |- ( ( ( ( # ` X ) - ( P ^ N ) ) e. NN0 /\ 0 e. NN0 ) -> ( ( ( # ` X ) - ( P ^ N ) ) + 0 ) e. NN0 ) |
|
| 118 | 115 116 117 | sylancl | |- ( ph -> ( ( ( # ` X ) - ( P ^ N ) ) + 0 ) e. NN0 ) |
| 119 | bcn0 | |- ( ( ( ( # ` X ) - ( P ^ N ) ) + 0 ) e. NN0 -> ( ( ( ( # ` X ) - ( P ^ N ) ) + 0 ) _C 0 ) = 1 ) |
|
| 120 | 118 119 | syl | |- ( ph -> ( ( ( ( # ` X ) - ( P ^ N ) ) + 0 ) _C 0 ) = 1 ) |
| 121 | 120 | oveq2d | |- ( ph -> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + 0 ) _C 0 ) ) = ( P pCnt 1 ) ) |
| 122 | pc1 | |- ( P e. Prime -> ( P pCnt 1 ) = 0 ) |
|
| 123 | 4 122 | syl | |- ( ph -> ( P pCnt 1 ) = 0 ) |
| 124 | 121 123 | eqtrd | |- ( ph -> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + 0 ) _C 0 ) ) = 0 ) |
| 125 | 124 | a1d | |- ( ph -> ( 0 < ( P ^ N ) -> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + 0 ) _C 0 ) ) = 0 ) ) |
| 126 | nn0re | |- ( n e. NN0 -> n e. RR ) |
|
| 127 | 126 | ad2antrl | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> n e. RR ) |
| 128 | nn0p1nn | |- ( n e. NN0 -> ( n + 1 ) e. NN ) |
|
| 129 | 128 | ad2antrl | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( n + 1 ) e. NN ) |
| 130 | 129 | nnred | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( n + 1 ) e. RR ) |
| 131 | 11 | adantr | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( P ^ N ) e. NN ) |
| 132 | 131 | nnred | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( P ^ N ) e. RR ) |
| 133 | 127 | ltp1d | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> n < ( n + 1 ) ) |
| 134 | simprr | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( n + 1 ) < ( P ^ N ) ) |
|
| 135 | 127 130 132 133 134 | lttrd | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> n < ( P ^ N ) ) |
| 136 | 135 | expr | |- ( ( ph /\ n e. NN0 ) -> ( ( n + 1 ) < ( P ^ N ) -> n < ( P ^ N ) ) ) |
| 137 | 136 | imim1d | |- ( ( ph /\ n e. NN0 ) -> ( ( n < ( P ^ N ) -> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) _C n ) ) = 0 ) -> ( ( n + 1 ) < ( P ^ N ) -> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) _C n ) ) = 0 ) ) ) |
| 138 | oveq1 | |- ( ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) _C n ) ) = 0 -> ( ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) _C n ) ) + ( P pCnt ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) / ( n + 1 ) ) ) ) = ( 0 + ( P pCnt ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) / ( n + 1 ) ) ) ) ) |
|
| 139 | 115 | adantr | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( ( # ` X ) - ( P ^ N ) ) e. NN0 ) |
| 140 | 139 | nn0cnd | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( ( # ` X ) - ( P ^ N ) ) e. CC ) |
| 141 | nn0cn | |- ( n e. NN0 -> n e. CC ) |
|
| 142 | 141 | ad2antrl | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> n e. CC ) |
| 143 | 1cnd | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> 1 e. CC ) |
|
| 144 | 140 142 143 | addassd | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) = ( ( ( # ` X ) - ( P ^ N ) ) + ( n + 1 ) ) ) |
| 145 | 144 | oveq1d | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) _C ( n + 1 ) ) = ( ( ( ( # ` X ) - ( P ^ N ) ) + ( n + 1 ) ) _C ( n + 1 ) ) ) |
| 146 | nn0addge2 | |- ( ( n e. RR /\ ( ( # ` X ) - ( P ^ N ) ) e. NN0 ) -> n <_ ( ( ( # ` X ) - ( P ^ N ) ) + n ) ) |
|
| 147 | 127 139 146 | syl2anc | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> n <_ ( ( ( # ` X ) - ( P ^ N ) ) + n ) ) |
| 148 | simprl | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> n e. NN0 ) |
|
| 149 | 148 33 | eleqtrdi | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> n e. ( ZZ>= ` 0 ) ) |
| 150 | 139 148 | nn0addcld | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( ( ( # ` X ) - ( P ^ N ) ) + n ) e. NN0 ) |
| 151 | 150 | nn0zd | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( ( ( # ` X ) - ( P ^ N ) ) + n ) e. ZZ ) |
| 152 | elfz5 | |- ( ( n e. ( ZZ>= ` 0 ) /\ ( ( ( # ` X ) - ( P ^ N ) ) + n ) e. ZZ ) -> ( n e. ( 0 ... ( ( ( # ` X ) - ( P ^ N ) ) + n ) ) <-> n <_ ( ( ( # ` X ) - ( P ^ N ) ) + n ) ) ) |
|
| 153 | 149 151 152 | syl2anc | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( n e. ( 0 ... ( ( ( # ` X ) - ( P ^ N ) ) + n ) ) <-> n <_ ( ( ( # ` X ) - ( P ^ N ) ) + n ) ) ) |
| 154 | 147 153 | mpbird | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> n e. ( 0 ... ( ( ( # ` X ) - ( P ^ N ) ) + n ) ) ) |
| 155 | bcp1nk | |- ( n e. ( 0 ... ( ( ( # ` X ) - ( P ^ N ) ) + n ) ) -> ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) _C ( n + 1 ) ) = ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) _C n ) x. ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) / ( n + 1 ) ) ) ) |
|
| 156 | 154 155 | syl | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) _C ( n + 1 ) ) = ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) _C n ) x. ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) / ( n + 1 ) ) ) ) |
| 157 | 145 156 | eqtr3d | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( ( ( ( # ` X ) - ( P ^ N ) ) + ( n + 1 ) ) _C ( n + 1 ) ) = ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) _C n ) x. ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) / ( n + 1 ) ) ) ) |
| 158 | 157 | oveq2d | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + ( n + 1 ) ) _C ( n + 1 ) ) ) = ( P pCnt ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) _C n ) x. ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) / ( n + 1 ) ) ) ) ) |
| 159 | 4 | adantr | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> P e. Prime ) |
| 160 | bccl2 | |- ( n e. ( 0 ... ( ( ( # ` X ) - ( P ^ N ) ) + n ) ) -> ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) _C n ) e. NN ) |
|
| 161 | 154 160 | syl | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) _C n ) e. NN ) |
| 162 | nnq | |- ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) _C n ) e. NN -> ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) _C n ) e. QQ ) |
|
| 163 | 161 162 | syl | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) _C n ) e. QQ ) |
| 164 | 161 | nnne0d | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) _C n ) =/= 0 ) |
| 165 | 151 | peano2zd | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) e. ZZ ) |
| 166 | znq | |- ( ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) e. ZZ /\ ( n + 1 ) e. NN ) -> ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) / ( n + 1 ) ) e. QQ ) |
|
| 167 | 165 129 166 | syl2anc | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) / ( n + 1 ) ) e. QQ ) |
| 168 | nn0p1nn | |- ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) e. NN0 -> ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) e. NN ) |
|
| 169 | 150 168 | syl | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) e. NN ) |
| 170 | nnrp | |- ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) e. NN -> ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) e. RR+ ) |
|
| 171 | nnrp | |- ( ( n + 1 ) e. NN -> ( n + 1 ) e. RR+ ) |
|
| 172 | rpdivcl | |- ( ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) e. RR+ /\ ( n + 1 ) e. RR+ ) -> ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) / ( n + 1 ) ) e. RR+ ) |
|
| 173 | 170 171 172 | syl2an | |- ( ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) e. NN /\ ( n + 1 ) e. NN ) -> ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) / ( n + 1 ) ) e. RR+ ) |
| 174 | 169 129 173 | syl2anc | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) / ( n + 1 ) ) e. RR+ ) |
| 175 | 174 | rpne0d | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) / ( n + 1 ) ) =/= 0 ) |
| 176 | pcqmul | |- ( ( P e. Prime /\ ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) _C n ) e. QQ /\ ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) _C n ) =/= 0 ) /\ ( ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) / ( n + 1 ) ) e. QQ /\ ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) / ( n + 1 ) ) =/= 0 ) ) -> ( P pCnt ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) _C n ) x. ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) / ( n + 1 ) ) ) ) = ( ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) _C n ) ) + ( P pCnt ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) / ( n + 1 ) ) ) ) ) |
|
| 177 | 159 163 164 167 175 176 | syl122anc | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( P pCnt ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) _C n ) x. ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) / ( n + 1 ) ) ) ) = ( ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) _C n ) ) + ( P pCnt ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) / ( n + 1 ) ) ) ) ) |
| 178 | 158 177 | eqtrd | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + ( n + 1 ) ) _C ( n + 1 ) ) ) = ( ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) _C n ) ) + ( P pCnt ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) / ( n + 1 ) ) ) ) ) |
| 179 | 169 | nnne0d | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) =/= 0 ) |
| 180 | pcdiv | |- ( ( P e. Prime /\ ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) e. ZZ /\ ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) =/= 0 ) /\ ( n + 1 ) e. NN ) -> ( P pCnt ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) / ( n + 1 ) ) ) = ( ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) ) - ( P pCnt ( n + 1 ) ) ) ) |
|
| 181 | 159 165 179 129 180 | syl121anc | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( P pCnt ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) / ( n + 1 ) ) ) = ( ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) ) - ( P pCnt ( n + 1 ) ) ) ) |
| 182 | 129 | nncnd | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( n + 1 ) e. CC ) |
| 183 | 140 182 144 | comraddd | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) = ( ( n + 1 ) + ( ( # ` X ) - ( P ^ N ) ) ) ) |
| 184 | 183 | oveq2d | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) ) = ( P pCnt ( ( n + 1 ) + ( ( # ` X ) - ( P ^ N ) ) ) ) ) |
| 185 | simpr | |- ( ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) /\ ( ( # ` X ) - ( P ^ N ) ) = 0 ) -> ( ( # ` X ) - ( P ^ N ) ) = 0 ) |
|
| 186 | 185 | oveq2d | |- ( ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) /\ ( ( # ` X ) - ( P ^ N ) ) = 0 ) -> ( ( n + 1 ) + ( ( # ` X ) - ( P ^ N ) ) ) = ( ( n + 1 ) + 0 ) ) |
| 187 | 182 | addridd | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( ( n + 1 ) + 0 ) = ( n + 1 ) ) |
| 188 | 187 | adantr | |- ( ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) /\ ( ( # ` X ) - ( P ^ N ) ) = 0 ) -> ( ( n + 1 ) + 0 ) = ( n + 1 ) ) |
| 189 | 186 188 | eqtr2d | |- ( ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) /\ ( ( # ` X ) - ( P ^ N ) ) = 0 ) -> ( n + 1 ) = ( ( n + 1 ) + ( ( # ` X ) - ( P ^ N ) ) ) ) |
| 190 | 189 | oveq2d | |- ( ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) /\ ( ( # ` X ) - ( P ^ N ) ) = 0 ) -> ( P pCnt ( n + 1 ) ) = ( P pCnt ( ( n + 1 ) + ( ( # ` X ) - ( P ^ N ) ) ) ) ) |
| 191 | 4 | ad2antrr | |- ( ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) /\ ( ( # ` X ) - ( P ^ N ) ) =/= 0 ) -> P e. Prime ) |
| 192 | nnq | |- ( ( n + 1 ) e. NN -> ( n + 1 ) e. QQ ) |
|
| 193 | 129 192 | syl | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( n + 1 ) e. QQ ) |
| 194 | 193 | adantr | |- ( ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) /\ ( ( # ` X ) - ( P ^ N ) ) =/= 0 ) -> ( n + 1 ) e. QQ ) |
| 195 | 139 | nn0zd | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( ( # ` X ) - ( P ^ N ) ) e. ZZ ) |
| 196 | zq | |- ( ( ( # ` X ) - ( P ^ N ) ) e. ZZ -> ( ( # ` X ) - ( P ^ N ) ) e. QQ ) |
|
| 197 | 195 196 | syl | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( ( # ` X ) - ( P ^ N ) ) e. QQ ) |
| 198 | 197 | adantr | |- ( ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) /\ ( ( # ` X ) - ( P ^ N ) ) =/= 0 ) -> ( ( # ` X ) - ( P ^ N ) ) e. QQ ) |
| 199 | 159 129 | pccld | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( P pCnt ( n + 1 ) ) e. NN0 ) |
| 200 | 199 | nn0red | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( P pCnt ( n + 1 ) ) e. RR ) |
| 201 | 200 | adantr | |- ( ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) /\ ( ( # ` X ) - ( P ^ N ) ) =/= 0 ) -> ( P pCnt ( n + 1 ) ) e. RR ) |
| 202 | 5 | adantr | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> N e. NN0 ) |
| 203 | 202 | nn0red | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> N e. RR ) |
| 204 | 203 | adantr | |- ( ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) /\ ( ( # ` X ) - ( P ^ N ) ) =/= 0 ) -> N e. RR ) |
| 205 | simpr | |- ( ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) /\ ( ( # ` X ) - ( P ^ N ) ) =/= 0 ) -> ( ( # ` X ) - ( P ^ N ) ) =/= 0 ) |
|
| 206 | 205 | neneqd | |- ( ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) /\ ( ( # ` X ) - ( P ^ N ) ) =/= 0 ) -> -. ( ( # ` X ) - ( P ^ N ) ) = 0 ) |
| 207 | 115 | ad2antrr | |- ( ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) /\ ( ( # ` X ) - ( P ^ N ) ) =/= 0 ) -> ( ( # ` X ) - ( P ^ N ) ) e. NN0 ) |
| 208 | elnn0 | |- ( ( ( # ` X ) - ( P ^ N ) ) e. NN0 <-> ( ( ( # ` X ) - ( P ^ N ) ) e. NN \/ ( ( # ` X ) - ( P ^ N ) ) = 0 ) ) |
|
| 209 | 207 208 | sylib | |- ( ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) /\ ( ( # ` X ) - ( P ^ N ) ) =/= 0 ) -> ( ( ( # ` X ) - ( P ^ N ) ) e. NN \/ ( ( # ` X ) - ( P ^ N ) ) = 0 ) ) |
| 210 | 209 | ord | |- ( ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) /\ ( ( # ` X ) - ( P ^ N ) ) =/= 0 ) -> ( -. ( ( # ` X ) - ( P ^ N ) ) e. NN -> ( ( # ` X ) - ( P ^ N ) ) = 0 ) ) |
| 211 | 206 210 | mt3d | |- ( ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) /\ ( ( # ` X ) - ( P ^ N ) ) =/= 0 ) -> ( ( # ` X ) - ( P ^ N ) ) e. NN ) |
| 212 | 191 211 | pccld | |- ( ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) /\ ( ( # ` X ) - ( P ^ N ) ) =/= 0 ) -> ( P pCnt ( ( # ` X ) - ( P ^ N ) ) ) e. NN0 ) |
| 213 | 212 | nn0red | |- ( ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) /\ ( ( # ` X ) - ( P ^ N ) ) =/= 0 ) -> ( P pCnt ( ( # ` X ) - ( P ^ N ) ) ) e. RR ) |
| 214 | 129 | nnzd | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( n + 1 ) e. ZZ ) |
| 215 | pcdvdsb | |- ( ( P e. Prime /\ ( n + 1 ) e. ZZ /\ N e. NN0 ) -> ( N <_ ( P pCnt ( n + 1 ) ) <-> ( P ^ N ) || ( n + 1 ) ) ) |
|
| 216 | 159 214 202 215 | syl3anc | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( N <_ ( P pCnt ( n + 1 ) ) <-> ( P ^ N ) || ( n + 1 ) ) ) |
| 217 | 12 | adantr | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( P ^ N ) e. ZZ ) |
| 218 | dvdsle | |- ( ( ( P ^ N ) e. ZZ /\ ( n + 1 ) e. NN ) -> ( ( P ^ N ) || ( n + 1 ) -> ( P ^ N ) <_ ( n + 1 ) ) ) |
|
| 219 | 217 129 218 | syl2anc | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( ( P ^ N ) || ( n + 1 ) -> ( P ^ N ) <_ ( n + 1 ) ) ) |
| 220 | 216 219 | sylbid | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( N <_ ( P pCnt ( n + 1 ) ) -> ( P ^ N ) <_ ( n + 1 ) ) ) |
| 221 | 203 200 | lenltd | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( N <_ ( P pCnt ( n + 1 ) ) <-> -. ( P pCnt ( n + 1 ) ) < N ) ) |
| 222 | 132 130 | lenltd | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( ( P ^ N ) <_ ( n + 1 ) <-> -. ( n + 1 ) < ( P ^ N ) ) ) |
| 223 | 220 221 222 | 3imtr3d | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( -. ( P pCnt ( n + 1 ) ) < N -> -. ( n + 1 ) < ( P ^ N ) ) ) |
| 224 | 134 223 | mt4d | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( P pCnt ( n + 1 ) ) < N ) |
| 225 | 224 | adantr | |- ( ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) /\ ( ( # ` X ) - ( P ^ N ) ) =/= 0 ) -> ( P pCnt ( n + 1 ) ) < N ) |
| 226 | dvdssubr | |- ( ( ( P ^ N ) e. ZZ /\ ( # ` X ) e. ZZ ) -> ( ( P ^ N ) || ( # ` X ) <-> ( P ^ N ) || ( ( # ` X ) - ( P ^ N ) ) ) ) |
|
| 227 | 12 35 226 | syl2anc | |- ( ph -> ( ( P ^ N ) || ( # ` X ) <-> ( P ^ N ) || ( ( # ` X ) - ( P ^ N ) ) ) ) |
| 228 | 6 227 | mpbid | |- ( ph -> ( P ^ N ) || ( ( # ` X ) - ( P ^ N ) ) ) |
| 229 | 228 | ad2antrr | |- ( ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) /\ ( ( # ` X ) - ( P ^ N ) ) =/= 0 ) -> ( P ^ N ) || ( ( # ` X ) - ( P ^ N ) ) ) |
| 230 | 207 | nn0zd | |- ( ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) /\ ( ( # ` X ) - ( P ^ N ) ) =/= 0 ) -> ( ( # ` X ) - ( P ^ N ) ) e. ZZ ) |
| 231 | 5 | ad2antrr | |- ( ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) /\ ( ( # ` X ) - ( P ^ N ) ) =/= 0 ) -> N e. NN0 ) |
| 232 | pcdvdsb | |- ( ( P e. Prime /\ ( ( # ` X ) - ( P ^ N ) ) e. ZZ /\ N e. NN0 ) -> ( N <_ ( P pCnt ( ( # ` X ) - ( P ^ N ) ) ) <-> ( P ^ N ) || ( ( # ` X ) - ( P ^ N ) ) ) ) |
|
| 233 | 191 230 231 232 | syl3anc | |- ( ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) /\ ( ( # ` X ) - ( P ^ N ) ) =/= 0 ) -> ( N <_ ( P pCnt ( ( # ` X ) - ( P ^ N ) ) ) <-> ( P ^ N ) || ( ( # ` X ) - ( P ^ N ) ) ) ) |
| 234 | 229 233 | mpbird | |- ( ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) /\ ( ( # ` X ) - ( P ^ N ) ) =/= 0 ) -> N <_ ( P pCnt ( ( # ` X ) - ( P ^ N ) ) ) ) |
| 235 | 201 204 213 225 234 | ltletrd | |- ( ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) /\ ( ( # ` X ) - ( P ^ N ) ) =/= 0 ) -> ( P pCnt ( n + 1 ) ) < ( P pCnt ( ( # ` X ) - ( P ^ N ) ) ) ) |
| 236 | 191 194 198 235 | pcadd2 | |- ( ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) /\ ( ( # ` X ) - ( P ^ N ) ) =/= 0 ) -> ( P pCnt ( n + 1 ) ) = ( P pCnt ( ( n + 1 ) + ( ( # ` X ) - ( P ^ N ) ) ) ) ) |
| 237 | 190 236 | pm2.61dane | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( P pCnt ( n + 1 ) ) = ( P pCnt ( ( n + 1 ) + ( ( # ` X ) - ( P ^ N ) ) ) ) ) |
| 238 | 184 237 | eqtr4d | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) ) = ( P pCnt ( n + 1 ) ) ) |
| 239 | 199 | nn0cnd | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( P pCnt ( n + 1 ) ) e. CC ) |
| 240 | 238 239 | eqeltrd | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) ) e. CC ) |
| 241 | 240 238 | subeq0bd | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) ) - ( P pCnt ( n + 1 ) ) ) = 0 ) |
| 242 | 181 241 | eqtrd | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( P pCnt ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) / ( n + 1 ) ) ) = 0 ) |
| 243 | 242 | oveq2d | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( 0 + ( P pCnt ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) / ( n + 1 ) ) ) ) = ( 0 + 0 ) ) |
| 244 | 00id | |- ( 0 + 0 ) = 0 |
|
| 245 | 243 244 | eqtr2di | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> 0 = ( 0 + ( P pCnt ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) / ( n + 1 ) ) ) ) ) |
| 246 | 178 245 | eqeq12d | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + ( n + 1 ) ) _C ( n + 1 ) ) ) = 0 <-> ( ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) _C n ) ) + ( P pCnt ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) / ( n + 1 ) ) ) ) = ( 0 + ( P pCnt ( ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) + 1 ) / ( n + 1 ) ) ) ) ) ) |
| 247 | 138 246 | imbitrrid | |- ( ( ph /\ ( n e. NN0 /\ ( n + 1 ) < ( P ^ N ) ) ) -> ( ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) _C n ) ) = 0 -> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + ( n + 1 ) ) _C ( n + 1 ) ) ) = 0 ) ) |
| 248 | 137 247 | animpimp2impd | |- ( n e. NN0 -> ( ( ph -> ( n < ( P ^ N ) -> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + n ) _C n ) ) = 0 ) ) -> ( ph -> ( ( n + 1 ) < ( P ^ N ) -> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + ( n + 1 ) ) _C ( n + 1 ) ) ) = 0 ) ) ) ) |
| 249 | 94 100 106 112 125 248 | nn0ind | |- ( ( ( P ^ N ) - 1 ) e. NN0 -> ( ph -> ( ( ( P ^ N ) - 1 ) < ( P ^ N ) -> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + ( ( P ^ N ) - 1 ) ) _C ( ( P ^ N ) - 1 ) ) ) = 0 ) ) ) |
| 250 | 88 249 | mpcom | |- ( ph -> ( ( ( P ^ N ) - 1 ) < ( P ^ N ) -> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + ( ( P ^ N ) - 1 ) ) _C ( ( P ^ N ) - 1 ) ) ) = 0 ) ) |
| 251 | 86 250 | mpd | |- ( ph -> ( P pCnt ( ( ( ( # ` X ) - ( P ^ N ) ) + ( ( P ^ N ) - 1 ) ) _C ( ( P ^ N ) - 1 ) ) ) = 0 ) |
| 252 | 84 251 | eqtr3d | |- ( ph -> ( P pCnt ( ( ( # ` X ) - 1 ) _C ( ( P ^ N ) - 1 ) ) ) = 0 ) |
| 253 | pcdiv | |- ( ( P e. Prime /\ ( ( # ` X ) e. ZZ /\ ( # ` X ) =/= 0 ) /\ ( P ^ N ) e. NN ) -> ( P pCnt ( ( # ` X ) / ( P ^ N ) ) ) = ( ( P pCnt ( # ` X ) ) - ( P pCnt ( P ^ N ) ) ) ) |
|
| 254 | 4 35 77 11 253 | syl121anc | |- ( ph -> ( P pCnt ( ( # ` X ) / ( P ^ N ) ) ) = ( ( P pCnt ( # ` X ) ) - ( P pCnt ( P ^ N ) ) ) ) |
| 255 | 5 | nn0zd | |- ( ph -> N e. ZZ ) |
| 256 | pcid | |- ( ( P e. Prime /\ N e. ZZ ) -> ( P pCnt ( P ^ N ) ) = N ) |
|
| 257 | 4 255 256 | syl2anc | |- ( ph -> ( P pCnt ( P ^ N ) ) = N ) |
| 258 | 257 | oveq2d | |- ( ph -> ( ( P pCnt ( # ` X ) ) - ( P pCnt ( P ^ N ) ) ) = ( ( P pCnt ( # ` X ) ) - N ) ) |
| 259 | 254 258 | eqtrd | |- ( ph -> ( P pCnt ( ( # ` X ) / ( P ^ N ) ) ) = ( ( P pCnt ( # ` X ) ) - N ) ) |
| 260 | 252 259 | oveq12d | |- ( ph -> ( ( P pCnt ( ( ( # ` X ) - 1 ) _C ( ( P ^ N ) - 1 ) ) ) + ( P pCnt ( ( # ` X ) / ( P ^ N ) ) ) ) = ( 0 + ( ( P pCnt ( # ` X ) ) - N ) ) ) |
| 261 | 4 28 | pccld | |- ( ph -> ( P pCnt ( # ` X ) ) e. NN0 ) |
| 262 | 261 | nn0zd | |- ( ph -> ( P pCnt ( # ` X ) ) e. ZZ ) |
| 263 | 262 255 | zsubcld | |- ( ph -> ( ( P pCnt ( # ` X ) ) - N ) e. ZZ ) |
| 264 | 263 | zcnd | |- ( ph -> ( ( P pCnt ( # ` X ) ) - N ) e. CC ) |
| 265 | 264 | addlidd | |- ( ph -> ( 0 + ( ( P pCnt ( # ` X ) ) - N ) ) = ( ( P pCnt ( # ` X ) ) - N ) ) |
| 266 | 80 260 265 | 3eqtrd | |- ( ph -> ( P pCnt ( ( ( ( # ` X ) - 1 ) _C ( ( P ^ N ) - 1 ) ) x. ( ( # ` X ) / ( P ^ N ) ) ) ) = ( ( P pCnt ( # ` X ) ) - N ) ) |
| 267 | 67 68 266 | 3eqtr3d | |- ( ph -> ( P pCnt ( # ` S ) ) = ( ( P pCnt ( # ` X ) ) - N ) ) |
| 268 | 41 267 | jca | |- ( ph -> ( ( # ` S ) e. NN /\ ( P pCnt ( # ` S ) ) = ( ( P pCnt ( # ` X ) ) - N ) ) ) |