This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One nonzero integer divides another integer if and only if their quotient is an integer. (Contributed by Jeff Hankins, 29-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsval2 | |- ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) -> ( M || N <-> ( N / M ) e. ZZ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divides | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> E. k e. ZZ ( k x. M ) = N ) ) |
|
| 2 | 1 | 3adant2 | |- ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) -> ( M || N <-> E. k e. ZZ ( k x. M ) = N ) ) |
| 3 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 4 | 3 | 3ad2ant3 | |- ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) -> N e. CC ) |
| 5 | 4 | adantr | |- ( ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) /\ k e. ZZ ) -> N e. CC ) |
| 6 | zcn | |- ( k e. ZZ -> k e. CC ) |
|
| 7 | 6 | adantl | |- ( ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) /\ k e. ZZ ) -> k e. CC ) |
| 8 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 9 | 8 | 3ad2ant1 | |- ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) -> M e. CC ) |
| 10 | 9 | adantr | |- ( ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) /\ k e. ZZ ) -> M e. CC ) |
| 11 | simpl2 | |- ( ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) /\ k e. ZZ ) -> M =/= 0 ) |
|
| 12 | 5 7 10 11 | divmul3d | |- ( ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) /\ k e. ZZ ) -> ( ( N / M ) = k <-> N = ( k x. M ) ) ) |
| 13 | eqcom | |- ( N = ( k x. M ) <-> ( k x. M ) = N ) |
|
| 14 | 12 13 | bitrdi | |- ( ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) /\ k e. ZZ ) -> ( ( N / M ) = k <-> ( k x. M ) = N ) ) |
| 15 | 14 | biimprd | |- ( ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) /\ k e. ZZ ) -> ( ( k x. M ) = N -> ( N / M ) = k ) ) |
| 16 | 15 | impr | |- ( ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) /\ ( k e. ZZ /\ ( k x. M ) = N ) ) -> ( N / M ) = k ) |
| 17 | simprl | |- ( ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) /\ ( k e. ZZ /\ ( k x. M ) = N ) ) -> k e. ZZ ) |
|
| 18 | 16 17 | eqeltrd | |- ( ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) /\ ( k e. ZZ /\ ( k x. M ) = N ) ) -> ( N / M ) e. ZZ ) |
| 19 | 18 | rexlimdvaa | |- ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) -> ( E. k e. ZZ ( k x. M ) = N -> ( N / M ) e. ZZ ) ) |
| 20 | simpr | |- ( ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) /\ ( N / M ) e. ZZ ) -> ( N / M ) e. ZZ ) |
|
| 21 | simp2 | |- ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) -> M =/= 0 ) |
|
| 22 | 4 9 21 | divcan1d | |- ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) -> ( ( N / M ) x. M ) = N ) |
| 23 | 22 | adantr | |- ( ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) /\ ( N / M ) e. ZZ ) -> ( ( N / M ) x. M ) = N ) |
| 24 | oveq1 | |- ( k = ( N / M ) -> ( k x. M ) = ( ( N / M ) x. M ) ) |
|
| 25 | 24 | eqeq1d | |- ( k = ( N / M ) -> ( ( k x. M ) = N <-> ( ( N / M ) x. M ) = N ) ) |
| 26 | 25 | rspcev | |- ( ( ( N / M ) e. ZZ /\ ( ( N / M ) x. M ) = N ) -> E. k e. ZZ ( k x. M ) = N ) |
| 27 | 20 23 26 | syl2anc | |- ( ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) /\ ( N / M ) e. ZZ ) -> E. k e. ZZ ( k x. M ) = N ) |
| 28 | 27 | ex | |- ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) -> ( ( N / M ) e. ZZ -> E. k e. ZZ ( k x. M ) = N ) ) |
| 29 | 19 28 | impbid | |- ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) -> ( E. k e. ZZ ( k x. M ) = N <-> ( N / M ) e. ZZ ) ) |
| 30 | 2 29 | bitrd | |- ( ( M e. ZZ /\ M =/= 0 /\ N e. ZZ ) -> ( M || N <-> ( N / M ) e. ZZ ) ) |