This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Division property of the prime power function. (Contributed by Mario Carneiro, 1-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcdiv | |- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ B e. NN ) -> ( P pCnt ( A / B ) ) = ( ( P pCnt A ) - ( P pCnt B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ B e. NN ) -> P e. Prime ) |
|
| 2 | simp2l | |- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ B e. NN ) -> A e. ZZ ) |
|
| 3 | simp3 | |- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ B e. NN ) -> B e. NN ) |
|
| 4 | znq | |- ( ( A e. ZZ /\ B e. NN ) -> ( A / B ) e. QQ ) |
|
| 5 | 2 3 4 | syl2anc | |- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ B e. NN ) -> ( A / B ) e. QQ ) |
| 6 | 2 | zcnd | |- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ B e. NN ) -> A e. CC ) |
| 7 | 3 | nncnd | |- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ B e. NN ) -> B e. CC ) |
| 8 | simp2r | |- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ B e. NN ) -> A =/= 0 ) |
|
| 9 | 3 | nnne0d | |- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ B e. NN ) -> B =/= 0 ) |
| 10 | 6 7 8 9 | divne0d | |- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ B e. NN ) -> ( A / B ) =/= 0 ) |
| 11 | eqid | |- sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) |
|
| 12 | eqid | |- sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) |
|
| 13 | 11 12 | pcval | |- ( ( P e. Prime /\ ( ( A / B ) e. QQ /\ ( A / B ) =/= 0 ) ) -> ( P pCnt ( A / B ) ) = ( iota z E. x e. ZZ E. y e. NN ( ( A / B ) = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) ) |
| 14 | 1 5 10 13 | syl12anc | |- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ B e. NN ) -> ( P pCnt ( A / B ) ) = ( iota z E. x e. ZZ E. y e. NN ( ( A / B ) = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) ) |
| 15 | eqid | |- sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) |
|
| 16 | 15 | pczpre | |- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) ) -> ( P pCnt A ) = sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) ) |
| 17 | 16 | 3adant3 | |- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ B e. NN ) -> ( P pCnt A ) = sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) ) |
| 18 | nnz | |- ( B e. NN -> B e. ZZ ) |
|
| 19 | nnne0 | |- ( B e. NN -> B =/= 0 ) |
|
| 20 | 18 19 | jca | |- ( B e. NN -> ( B e. ZZ /\ B =/= 0 ) ) |
| 21 | eqid | |- sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) |
|
| 22 | 21 | pczpre | |- ( ( P e. Prime /\ ( B e. ZZ /\ B =/= 0 ) ) -> ( P pCnt B ) = sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) ) |
| 23 | 20 22 | sylan2 | |- ( ( P e. Prime /\ B e. NN ) -> ( P pCnt B ) = sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) ) |
| 24 | 23 | 3adant2 | |- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ B e. NN ) -> ( P pCnt B ) = sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) ) |
| 25 | 17 24 | oveq12d | |- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ B e. NN ) -> ( ( P pCnt A ) - ( P pCnt B ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) ) ) |
| 26 | eqid | |- ( A / B ) = ( A / B ) |
|
| 27 | 25 26 | jctil | |- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ B e. NN ) -> ( ( A / B ) = ( A / B ) /\ ( ( P pCnt A ) - ( P pCnt B ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) ) ) ) |
| 28 | oveq1 | |- ( x = A -> ( x / y ) = ( A / y ) ) |
|
| 29 | 28 | eqeq2d | |- ( x = A -> ( ( A / B ) = ( x / y ) <-> ( A / B ) = ( A / y ) ) ) |
| 30 | breq2 | |- ( x = A -> ( ( P ^ n ) || x <-> ( P ^ n ) || A ) ) |
|
| 31 | 30 | rabbidv | |- ( x = A -> { n e. NN0 | ( P ^ n ) || x } = { n e. NN0 | ( P ^ n ) || A } ) |
| 32 | 31 | supeq1d | |- ( x = A -> sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) ) |
| 33 | 32 | oveq1d | |- ( x = A -> ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) |
| 34 | 33 | eqeq2d | |- ( x = A -> ( ( ( P pCnt A ) - ( P pCnt B ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) <-> ( ( P pCnt A ) - ( P pCnt B ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) |
| 35 | 29 34 | anbi12d | |- ( x = A -> ( ( ( A / B ) = ( x / y ) /\ ( ( P pCnt A ) - ( P pCnt B ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) <-> ( ( A / B ) = ( A / y ) /\ ( ( P pCnt A ) - ( P pCnt B ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) ) |
| 36 | oveq2 | |- ( y = B -> ( A / y ) = ( A / B ) ) |
|
| 37 | 36 | eqeq2d | |- ( y = B -> ( ( A / B ) = ( A / y ) <-> ( A / B ) = ( A / B ) ) ) |
| 38 | breq2 | |- ( y = B -> ( ( P ^ n ) || y <-> ( P ^ n ) || B ) ) |
|
| 39 | 38 | rabbidv | |- ( y = B -> { n e. NN0 | ( P ^ n ) || y } = { n e. NN0 | ( P ^ n ) || B } ) |
| 40 | 39 | supeq1d | |- ( y = B -> sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) ) |
| 41 | 40 | oveq2d | |- ( y = B -> ( sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) ) ) |
| 42 | 41 | eqeq2d | |- ( y = B -> ( ( ( P pCnt A ) - ( P pCnt B ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) <-> ( ( P pCnt A ) - ( P pCnt B ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) ) ) ) |
| 43 | 37 42 | anbi12d | |- ( y = B -> ( ( ( A / B ) = ( A / y ) /\ ( ( P pCnt A ) - ( P pCnt B ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) <-> ( ( A / B ) = ( A / B ) /\ ( ( P pCnt A ) - ( P pCnt B ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) ) ) ) ) |
| 44 | 35 43 | rspc2ev | |- ( ( A e. ZZ /\ B e. NN /\ ( ( A / B ) = ( A / B ) /\ ( ( P pCnt A ) - ( P pCnt B ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || A } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || B } , RR , < ) ) ) ) -> E. x e. ZZ E. y e. NN ( ( A / B ) = ( x / y ) /\ ( ( P pCnt A ) - ( P pCnt B ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) |
| 45 | 2 3 27 44 | syl3anc | |- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ B e. NN ) -> E. x e. ZZ E. y e. NN ( ( A / B ) = ( x / y ) /\ ( ( P pCnt A ) - ( P pCnt B ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) |
| 46 | ovex | |- ( ( P pCnt A ) - ( P pCnt B ) ) e. _V |
|
| 47 | 11 12 | pceu | |- ( ( P e. Prime /\ ( ( A / B ) e. QQ /\ ( A / B ) =/= 0 ) ) -> E! z E. x e. ZZ E. y e. NN ( ( A / B ) = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) |
| 48 | 1 5 10 47 | syl12anc | |- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ B e. NN ) -> E! z E. x e. ZZ E. y e. NN ( ( A / B ) = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) |
| 49 | eqeq1 | |- ( z = ( ( P pCnt A ) - ( P pCnt B ) ) -> ( z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) <-> ( ( P pCnt A ) - ( P pCnt B ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) |
|
| 50 | 49 | anbi2d | |- ( z = ( ( P pCnt A ) - ( P pCnt B ) ) -> ( ( ( A / B ) = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) <-> ( ( A / B ) = ( x / y ) /\ ( ( P pCnt A ) - ( P pCnt B ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) ) |
| 51 | 50 | 2rexbidv | |- ( z = ( ( P pCnt A ) - ( P pCnt B ) ) -> ( E. x e. ZZ E. y e. NN ( ( A / B ) = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) <-> E. x e. ZZ E. y e. NN ( ( A / B ) = ( x / y ) /\ ( ( P pCnt A ) - ( P pCnt B ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) ) |
| 52 | 51 | iota2 | |- ( ( ( ( P pCnt A ) - ( P pCnt B ) ) e. _V /\ E! z E. x e. ZZ E. y e. NN ( ( A / B ) = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) -> ( E. x e. ZZ E. y e. NN ( ( A / B ) = ( x / y ) /\ ( ( P pCnt A ) - ( P pCnt B ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) <-> ( iota z E. x e. ZZ E. y e. NN ( ( A / B ) = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) = ( ( P pCnt A ) - ( P pCnt B ) ) ) ) |
| 53 | 46 48 52 | sylancr | |- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ B e. NN ) -> ( E. x e. ZZ E. y e. NN ( ( A / B ) = ( x / y ) /\ ( ( P pCnt A ) - ( P pCnt B ) ) = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) <-> ( iota z E. x e. ZZ E. y e. NN ( ( A / B ) = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) = ( ( P pCnt A ) - ( P pCnt B ) ) ) ) |
| 54 | 45 53 | mpbid | |- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ B e. NN ) -> ( iota z E. x e. ZZ E. y e. NN ( ( A / B ) = ( x / y ) /\ z = ( sup ( { n e. NN0 | ( P ^ n ) || x } , RR , < ) - sup ( { n e. NN0 | ( P ^ n ) || y } , RR , < ) ) ) ) = ( ( P pCnt A ) - ( P pCnt B ) ) ) |
| 55 | 14 54 | eqtrd | |- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) /\ B e. NN ) -> ( P pCnt ( A / B ) ) = ( ( P pCnt A ) - ( P pCnt B ) ) ) |