This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the prime count function at 1. (Contributed by Mario Carneiro, 23-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pc1 | |- ( P e. Prime -> ( P pCnt 1 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z | |- 1 e. ZZ |
|
| 2 | ax-1ne0 | |- 1 =/= 0 |
|
| 3 | eqid | |- sup ( { n e. NN0 | ( P ^ n ) || 1 } , RR , < ) = sup ( { n e. NN0 | ( P ^ n ) || 1 } , RR , < ) |
|
| 4 | 3 | pczpre | |- ( ( P e. Prime /\ ( 1 e. ZZ /\ 1 =/= 0 ) ) -> ( P pCnt 1 ) = sup ( { n e. NN0 | ( P ^ n ) || 1 } , RR , < ) ) |
| 5 | 1 2 4 | mpanr12 | |- ( P e. Prime -> ( P pCnt 1 ) = sup ( { n e. NN0 | ( P ^ n ) || 1 } , RR , < ) ) |
| 6 | prmuz2 | |- ( P e. Prime -> P e. ( ZZ>= ` 2 ) ) |
|
| 7 | eqid | |- 1 = 1 |
|
| 8 | eqid | |- { n e. NN0 | ( P ^ n ) || 1 } = { n e. NN0 | ( P ^ n ) || 1 } |
|
| 9 | 8 3 | pcpre1 | |- ( ( P e. ( ZZ>= ` 2 ) /\ 1 = 1 ) -> sup ( { n e. NN0 | ( P ^ n ) || 1 } , RR , < ) = 0 ) |
| 10 | 6 7 9 | sylancl | |- ( P e. Prime -> sup ( { n e. NN0 | ( P ^ n ) || 1 } , RR , < ) = 0 ) |
| 11 | 5 10 | eqtrd | |- ( P e. Prime -> ( P pCnt 1 ) = 0 ) |