This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the # function. (Contributed by Paul Chapman, 26-Oct-2012) (Revised by Mario Carneiro, 13-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashcl | |- ( A e. Fin -> ( # ` A ) e. NN0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
|
| 2 | 1 | hashgval | |- ( A e. Fin -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` A ) ) = ( # ` A ) ) |
| 3 | ficardom | |- ( A e. Fin -> ( card ` A ) e. _om ) |
|
| 4 | 1 | hashgf1o | |- ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) : _om -1-1-onto-> NN0 |
| 5 | f1of | |- ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) : _om -1-1-onto-> NN0 -> ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) : _om --> NN0 ) |
|
| 6 | 4 5 | ax-mp | |- ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) : _om --> NN0 |
| 7 | 6 | ffvelcdmi | |- ( ( card ` A ) e. _om -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` A ) ) e. NN0 ) |
| 8 | 3 7 | syl | |- ( A e. Fin -> ( ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) ` ( card ` A ) ) e. NN0 ) |
| 9 | 2 8 | eqeltrrd | |- ( A e. Fin -> ( # ` A ) e. NN0 ) |