This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The prime count of a prime power. (Contributed by Mario Carneiro, 9-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcid | |- ( ( P e. Prime /\ A e. ZZ ) -> ( P pCnt ( P ^ A ) ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elznn0nn | |- ( A e. ZZ <-> ( A e. NN0 \/ ( A e. RR /\ -u A e. NN ) ) ) |
|
| 2 | pcidlem | |- ( ( P e. Prime /\ A e. NN0 ) -> ( P pCnt ( P ^ A ) ) = A ) |
|
| 3 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 4 | 3 | adantr | |- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> P e. NN ) |
| 5 | 4 | nncnd | |- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> P e. CC ) |
| 6 | simprl | |- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> A e. RR ) |
|
| 7 | 6 | recnd | |- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> A e. CC ) |
| 8 | nnnn0 | |- ( -u A e. NN -> -u A e. NN0 ) |
|
| 9 | 8 | ad2antll | |- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> -u A e. NN0 ) |
| 10 | expneg2 | |- ( ( P e. CC /\ A e. CC /\ -u A e. NN0 ) -> ( P ^ A ) = ( 1 / ( P ^ -u A ) ) ) |
|
| 11 | 5 7 9 10 | syl3anc | |- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> ( P ^ A ) = ( 1 / ( P ^ -u A ) ) ) |
| 12 | 11 | oveq2d | |- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> ( P pCnt ( P ^ A ) ) = ( P pCnt ( 1 / ( P ^ -u A ) ) ) ) |
| 13 | simpl | |- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> P e. Prime ) |
|
| 14 | 1zzd | |- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> 1 e. ZZ ) |
|
| 15 | ax-1ne0 | |- 1 =/= 0 |
|
| 16 | 15 | a1i | |- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> 1 =/= 0 ) |
| 17 | 4 9 | nnexpcld | |- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> ( P ^ -u A ) e. NN ) |
| 18 | pcdiv | |- ( ( P e. Prime /\ ( 1 e. ZZ /\ 1 =/= 0 ) /\ ( P ^ -u A ) e. NN ) -> ( P pCnt ( 1 / ( P ^ -u A ) ) ) = ( ( P pCnt 1 ) - ( P pCnt ( P ^ -u A ) ) ) ) |
|
| 19 | 13 14 16 17 18 | syl121anc | |- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> ( P pCnt ( 1 / ( P ^ -u A ) ) ) = ( ( P pCnt 1 ) - ( P pCnt ( P ^ -u A ) ) ) ) |
| 20 | pc1 | |- ( P e. Prime -> ( P pCnt 1 ) = 0 ) |
|
| 21 | 20 | adantr | |- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> ( P pCnt 1 ) = 0 ) |
| 22 | pcidlem | |- ( ( P e. Prime /\ -u A e. NN0 ) -> ( P pCnt ( P ^ -u A ) ) = -u A ) |
|
| 23 | 9 22 | syldan | |- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> ( P pCnt ( P ^ -u A ) ) = -u A ) |
| 24 | 21 23 | oveq12d | |- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> ( ( P pCnt 1 ) - ( P pCnt ( P ^ -u A ) ) ) = ( 0 - -u A ) ) |
| 25 | df-neg | |- -u -u A = ( 0 - -u A ) |
|
| 26 | 7 | negnegd | |- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> -u -u A = A ) |
| 27 | 25 26 | eqtr3id | |- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> ( 0 - -u A ) = A ) |
| 28 | 24 27 | eqtrd | |- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> ( ( P pCnt 1 ) - ( P pCnt ( P ^ -u A ) ) ) = A ) |
| 29 | 19 28 | eqtrd | |- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> ( P pCnt ( 1 / ( P ^ -u A ) ) ) = A ) |
| 30 | 12 29 | eqtrd | |- ( ( P e. Prime /\ ( A e. RR /\ -u A e. NN ) ) -> ( P pCnt ( P ^ A ) ) = A ) |
| 31 | 2 30 | jaodan | |- ( ( P e. Prime /\ ( A e. NN0 \/ ( A e. RR /\ -u A e. NN ) ) ) -> ( P pCnt ( P ^ A ) ) = A ) |
| 32 | 1 31 | sylan2b | |- ( ( P e. Prime /\ A e. ZZ ) -> ( P pCnt ( P ^ A ) ) = A ) |