This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inequality of pcadd becomes an equality when one of the factors has prime count strictly less than the other. (Contributed by Mario Carneiro, 16-Jan-2015) (Revised by Mario Carneiro, 26-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pcadd2.1 | |- ( ph -> P e. Prime ) |
|
| pcadd2.2 | |- ( ph -> A e. QQ ) |
||
| pcadd2.3 | |- ( ph -> B e. QQ ) |
||
| pcadd2.4 | |- ( ph -> ( P pCnt A ) < ( P pCnt B ) ) |
||
| Assertion | pcadd2 | |- ( ph -> ( P pCnt A ) = ( P pCnt ( A + B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pcadd2.1 | |- ( ph -> P e. Prime ) |
|
| 2 | pcadd2.2 | |- ( ph -> A e. QQ ) |
|
| 3 | pcadd2.3 | |- ( ph -> B e. QQ ) |
|
| 4 | pcadd2.4 | |- ( ph -> ( P pCnt A ) < ( P pCnt B ) ) |
|
| 5 | pcxcl | |- ( ( P e. Prime /\ A e. QQ ) -> ( P pCnt A ) e. RR* ) |
|
| 6 | 1 2 5 | syl2anc | |- ( ph -> ( P pCnt A ) e. RR* ) |
| 7 | qaddcl | |- ( ( A e. QQ /\ B e. QQ ) -> ( A + B ) e. QQ ) |
|
| 8 | 2 3 7 | syl2anc | |- ( ph -> ( A + B ) e. QQ ) |
| 9 | pcxcl | |- ( ( P e. Prime /\ ( A + B ) e. QQ ) -> ( P pCnt ( A + B ) ) e. RR* ) |
|
| 10 | 1 8 9 | syl2anc | |- ( ph -> ( P pCnt ( A + B ) ) e. RR* ) |
| 11 | pcxcl | |- ( ( P e. Prime /\ B e. QQ ) -> ( P pCnt B ) e. RR* ) |
|
| 12 | 1 3 11 | syl2anc | |- ( ph -> ( P pCnt B ) e. RR* ) |
| 13 | 6 12 4 | xrltled | |- ( ph -> ( P pCnt A ) <_ ( P pCnt B ) ) |
| 14 | 1 2 3 13 | pcadd | |- ( ph -> ( P pCnt A ) <_ ( P pCnt ( A + B ) ) ) |
| 15 | qnegcl | |- ( B e. QQ -> -u B e. QQ ) |
|
| 16 | 3 15 | syl | |- ( ph -> -u B e. QQ ) |
| 17 | xrltnle | |- ( ( ( P pCnt A ) e. RR* /\ ( P pCnt B ) e. RR* ) -> ( ( P pCnt A ) < ( P pCnt B ) <-> -. ( P pCnt B ) <_ ( P pCnt A ) ) ) |
|
| 18 | 6 12 17 | syl2anc | |- ( ph -> ( ( P pCnt A ) < ( P pCnt B ) <-> -. ( P pCnt B ) <_ ( P pCnt A ) ) ) |
| 19 | 4 18 | mpbid | |- ( ph -> -. ( P pCnt B ) <_ ( P pCnt A ) ) |
| 20 | 1 | adantr | |- ( ( ph /\ ( P pCnt B ) <_ ( P pCnt ( A + B ) ) ) -> P e. Prime ) |
| 21 | 16 | adantr | |- ( ( ph /\ ( P pCnt B ) <_ ( P pCnt ( A + B ) ) ) -> -u B e. QQ ) |
| 22 | 8 | adantr | |- ( ( ph /\ ( P pCnt B ) <_ ( P pCnt ( A + B ) ) ) -> ( A + B ) e. QQ ) |
| 23 | pcneg | |- ( ( P e. Prime /\ B e. QQ ) -> ( P pCnt -u B ) = ( P pCnt B ) ) |
|
| 24 | 1 3 23 | syl2anc | |- ( ph -> ( P pCnt -u B ) = ( P pCnt B ) ) |
| 25 | 24 | breq1d | |- ( ph -> ( ( P pCnt -u B ) <_ ( P pCnt ( A + B ) ) <-> ( P pCnt B ) <_ ( P pCnt ( A + B ) ) ) ) |
| 26 | 25 | biimpar | |- ( ( ph /\ ( P pCnt B ) <_ ( P pCnt ( A + B ) ) ) -> ( P pCnt -u B ) <_ ( P pCnt ( A + B ) ) ) |
| 27 | 20 21 22 26 | pcadd | |- ( ( ph /\ ( P pCnt B ) <_ ( P pCnt ( A + B ) ) ) -> ( P pCnt -u B ) <_ ( P pCnt ( -u B + ( A + B ) ) ) ) |
| 28 | 27 | ex | |- ( ph -> ( ( P pCnt B ) <_ ( P pCnt ( A + B ) ) -> ( P pCnt -u B ) <_ ( P pCnt ( -u B + ( A + B ) ) ) ) ) |
| 29 | qcn | |- ( B e. QQ -> B e. CC ) |
|
| 30 | 3 29 | syl | |- ( ph -> B e. CC ) |
| 31 | 30 | negcld | |- ( ph -> -u B e. CC ) |
| 32 | qcn | |- ( A e. QQ -> A e. CC ) |
|
| 33 | 2 32 | syl | |- ( ph -> A e. CC ) |
| 34 | 31 33 30 | add12d | |- ( ph -> ( -u B + ( A + B ) ) = ( A + ( -u B + B ) ) ) |
| 35 | 31 30 | addcomd | |- ( ph -> ( -u B + B ) = ( B + -u B ) ) |
| 36 | 30 | negidd | |- ( ph -> ( B + -u B ) = 0 ) |
| 37 | 35 36 | eqtrd | |- ( ph -> ( -u B + B ) = 0 ) |
| 38 | 37 | oveq2d | |- ( ph -> ( A + ( -u B + B ) ) = ( A + 0 ) ) |
| 39 | 33 | addridd | |- ( ph -> ( A + 0 ) = A ) |
| 40 | 34 38 39 | 3eqtrd | |- ( ph -> ( -u B + ( A + B ) ) = A ) |
| 41 | 40 | oveq2d | |- ( ph -> ( P pCnt ( -u B + ( A + B ) ) ) = ( P pCnt A ) ) |
| 42 | 24 41 | breq12d | |- ( ph -> ( ( P pCnt -u B ) <_ ( P pCnt ( -u B + ( A + B ) ) ) <-> ( P pCnt B ) <_ ( P pCnt A ) ) ) |
| 43 | 28 42 | sylibd | |- ( ph -> ( ( P pCnt B ) <_ ( P pCnt ( A + B ) ) -> ( P pCnt B ) <_ ( P pCnt A ) ) ) |
| 44 | 19 43 | mtod | |- ( ph -> -. ( P pCnt B ) <_ ( P pCnt ( A + B ) ) ) |
| 45 | xrltnle | |- ( ( ( P pCnt ( A + B ) ) e. RR* /\ ( P pCnt B ) e. RR* ) -> ( ( P pCnt ( A + B ) ) < ( P pCnt B ) <-> -. ( P pCnt B ) <_ ( P pCnt ( A + B ) ) ) ) |
|
| 46 | 10 12 45 | syl2anc | |- ( ph -> ( ( P pCnt ( A + B ) ) < ( P pCnt B ) <-> -. ( P pCnt B ) <_ ( P pCnt ( A + B ) ) ) ) |
| 47 | 44 46 | mpbird | |- ( ph -> ( P pCnt ( A + B ) ) < ( P pCnt B ) ) |
| 48 | 10 12 47 | xrltled | |- ( ph -> ( P pCnt ( A + B ) ) <_ ( P pCnt B ) ) |
| 49 | 48 24 | breqtrrd | |- ( ph -> ( P pCnt ( A + B ) ) <_ ( P pCnt -u B ) ) |
| 50 | 1 8 16 49 | pcadd | |- ( ph -> ( P pCnt ( A + B ) ) <_ ( P pCnt ( ( A + B ) + -u B ) ) ) |
| 51 | 33 30 31 | addassd | |- ( ph -> ( ( A + B ) + -u B ) = ( A + ( B + -u B ) ) ) |
| 52 | 36 | oveq2d | |- ( ph -> ( A + ( B + -u B ) ) = ( A + 0 ) ) |
| 53 | 51 52 39 | 3eqtrd | |- ( ph -> ( ( A + B ) + -u B ) = A ) |
| 54 | 53 | oveq2d | |- ( ph -> ( P pCnt ( ( A + B ) + -u B ) ) = ( P pCnt A ) ) |
| 55 | 50 54 | breqtrd | |- ( ph -> ( P pCnt ( A + B ) ) <_ ( P pCnt A ) ) |
| 56 | 6 10 14 55 | xrletrid | |- ( ph -> ( P pCnt A ) = ( P pCnt ( A + B ) ) ) |