This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The divisors of a positive integer are bounded by it. The proof does not use / . (Contributed by Paul Chapman, 21-Mar-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvdsle | |- ( ( M e. ZZ /\ N e. NN ) -> ( M || N -> M <_ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 | |- ( M = if ( M e. ZZ , M , 1 ) -> ( N < M <-> N < if ( M e. ZZ , M , 1 ) ) ) |
|
| 2 | oveq2 | |- ( M = if ( M e. ZZ , M , 1 ) -> ( n x. M ) = ( n x. if ( M e. ZZ , M , 1 ) ) ) |
|
| 3 | 2 | neeq1d | |- ( M = if ( M e. ZZ , M , 1 ) -> ( ( n x. M ) =/= N <-> ( n x. if ( M e. ZZ , M , 1 ) ) =/= N ) ) |
| 4 | 1 3 | imbi12d | |- ( M = if ( M e. ZZ , M , 1 ) -> ( ( N < M -> ( n x. M ) =/= N ) <-> ( N < if ( M e. ZZ , M , 1 ) -> ( n x. if ( M e. ZZ , M , 1 ) ) =/= N ) ) ) |
| 5 | breq1 | |- ( N = if ( N e. NN , N , 1 ) -> ( N < if ( M e. ZZ , M , 1 ) <-> if ( N e. NN , N , 1 ) < if ( M e. ZZ , M , 1 ) ) ) |
|
| 6 | neeq2 | |- ( N = if ( N e. NN , N , 1 ) -> ( ( n x. if ( M e. ZZ , M , 1 ) ) =/= N <-> ( n x. if ( M e. ZZ , M , 1 ) ) =/= if ( N e. NN , N , 1 ) ) ) |
|
| 7 | 5 6 | imbi12d | |- ( N = if ( N e. NN , N , 1 ) -> ( ( N < if ( M e. ZZ , M , 1 ) -> ( n x. if ( M e. ZZ , M , 1 ) ) =/= N ) <-> ( if ( N e. NN , N , 1 ) < if ( M e. ZZ , M , 1 ) -> ( n x. if ( M e. ZZ , M , 1 ) ) =/= if ( N e. NN , N , 1 ) ) ) ) |
| 8 | oveq1 | |- ( n = if ( n e. ZZ , n , 1 ) -> ( n x. if ( M e. ZZ , M , 1 ) ) = ( if ( n e. ZZ , n , 1 ) x. if ( M e. ZZ , M , 1 ) ) ) |
|
| 9 | 8 | neeq1d | |- ( n = if ( n e. ZZ , n , 1 ) -> ( ( n x. if ( M e. ZZ , M , 1 ) ) =/= if ( N e. NN , N , 1 ) <-> ( if ( n e. ZZ , n , 1 ) x. if ( M e. ZZ , M , 1 ) ) =/= if ( N e. NN , N , 1 ) ) ) |
| 10 | 9 | imbi2d | |- ( n = if ( n e. ZZ , n , 1 ) -> ( ( if ( N e. NN , N , 1 ) < if ( M e. ZZ , M , 1 ) -> ( n x. if ( M e. ZZ , M , 1 ) ) =/= if ( N e. NN , N , 1 ) ) <-> ( if ( N e. NN , N , 1 ) < if ( M e. ZZ , M , 1 ) -> ( if ( n e. ZZ , n , 1 ) x. if ( M e. ZZ , M , 1 ) ) =/= if ( N e. NN , N , 1 ) ) ) ) |
| 11 | 1z | |- 1 e. ZZ |
|
| 12 | 11 | elimel | |- if ( M e. ZZ , M , 1 ) e. ZZ |
| 13 | 1nn | |- 1 e. NN |
|
| 14 | 13 | elimel | |- if ( N e. NN , N , 1 ) e. NN |
| 15 | 11 | elimel | |- if ( n e. ZZ , n , 1 ) e. ZZ |
| 16 | 12 14 15 | dvdslelem | |- ( if ( N e. NN , N , 1 ) < if ( M e. ZZ , M , 1 ) -> ( if ( n e. ZZ , n , 1 ) x. if ( M e. ZZ , M , 1 ) ) =/= if ( N e. NN , N , 1 ) ) |
| 17 | 4 7 10 16 | dedth3h | |- ( ( M e. ZZ /\ N e. NN /\ n e. ZZ ) -> ( N < M -> ( n x. M ) =/= N ) ) |
| 18 | 17 | 3expia | |- ( ( M e. ZZ /\ N e. NN ) -> ( n e. ZZ -> ( N < M -> ( n x. M ) =/= N ) ) ) |
| 19 | 18 | com23 | |- ( ( M e. ZZ /\ N e. NN ) -> ( N < M -> ( n e. ZZ -> ( n x. M ) =/= N ) ) ) |
| 20 | 19 | 3impia | |- ( ( M e. ZZ /\ N e. NN /\ N < M ) -> ( n e. ZZ -> ( n x. M ) =/= N ) ) |
| 21 | 20 | imp | |- ( ( ( M e. ZZ /\ N e. NN /\ N < M ) /\ n e. ZZ ) -> ( n x. M ) =/= N ) |
| 22 | 21 | neneqd | |- ( ( ( M e. ZZ /\ N e. NN /\ N < M ) /\ n e. ZZ ) -> -. ( n x. M ) = N ) |
| 23 | 22 | nrexdv | |- ( ( M e. ZZ /\ N e. NN /\ N < M ) -> -. E. n e. ZZ ( n x. M ) = N ) |
| 24 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 25 | divides | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> E. n e. ZZ ( n x. M ) = N ) ) |
|
| 26 | 24 25 | sylan2 | |- ( ( M e. ZZ /\ N e. NN ) -> ( M || N <-> E. n e. ZZ ( n x. M ) = N ) ) |
| 27 | 26 | 3adant3 | |- ( ( M e. ZZ /\ N e. NN /\ N < M ) -> ( M || N <-> E. n e. ZZ ( n x. M ) = N ) ) |
| 28 | 23 27 | mtbird | |- ( ( M e. ZZ /\ N e. NN /\ N < M ) -> -. M || N ) |
| 29 | 28 | 3expia | |- ( ( M e. ZZ /\ N e. NN ) -> ( N < M -> -. M || N ) ) |
| 30 | 29 | con2d | |- ( ( M e. ZZ /\ N e. NN ) -> ( M || N -> -. N < M ) ) |
| 31 | zre | |- ( M e. ZZ -> M e. RR ) |
|
| 32 | nnre | |- ( N e. NN -> N e. RR ) |
|
| 33 | lenlt | |- ( ( M e. RR /\ N e. RR ) -> ( M <_ N <-> -. N < M ) ) |
|
| 34 | 31 32 33 | syl2an | |- ( ( M e. ZZ /\ N e. NN ) -> ( M <_ N <-> -. N < M ) ) |
| 35 | 30 34 | sylibrd | |- ( ( M e. ZZ /\ N e. NN ) -> ( M || N -> M <_ N ) ) |