This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication property of the prime power function. (Contributed by Mario Carneiro, 9-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcqmul | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt ( A x. B ) ) = ( ( P pCnt A ) + ( P pCnt B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2l | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> A e. QQ ) |
|
| 2 | elq | |- ( A e. QQ <-> E. x e. ZZ E. y e. NN A = ( x / y ) ) |
|
| 3 | 1 2 | sylib | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> E. x e. ZZ E. y e. NN A = ( x / y ) ) |
| 4 | simp3l | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> B e. QQ ) |
|
| 5 | elq | |- ( B e. QQ <-> E. z e. ZZ E. w e. NN B = ( z / w ) ) |
|
| 6 | 4 5 | sylib | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> E. z e. ZZ E. w e. NN B = ( z / w ) ) |
| 7 | reeanv | |- ( E. x e. ZZ E. z e. ZZ ( E. y e. NN A = ( x / y ) /\ E. w e. NN B = ( z / w ) ) <-> ( E. x e. ZZ E. y e. NN A = ( x / y ) /\ E. z e. ZZ E. w e. NN B = ( z / w ) ) ) |
|
| 8 | reeanv | |- ( E. y e. NN E. w e. NN ( A = ( x / y ) /\ B = ( z / w ) ) <-> ( E. y e. NN A = ( x / y ) /\ E. w e. NN B = ( z / w ) ) ) |
|
| 9 | simp2r | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> A =/= 0 ) |
|
| 10 | simp3r | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> B =/= 0 ) |
|
| 11 | 9 10 | jca | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( A =/= 0 /\ B =/= 0 ) ) |
| 12 | 11 | ad2antrr | |- ( ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> ( A =/= 0 /\ B =/= 0 ) ) |
| 13 | simp1 | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> P e. Prime ) |
|
| 14 | simprl | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> y e. NN ) |
|
| 15 | 14 | nncnd | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> y e. CC ) |
| 16 | 14 | nnne0d | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> y =/= 0 ) |
| 17 | 15 16 | div0d | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> ( 0 / y ) = 0 ) |
| 18 | oveq1 | |- ( x = 0 -> ( x / y ) = ( 0 / y ) ) |
|
| 19 | 18 | eqeq1d | |- ( x = 0 -> ( ( x / y ) = 0 <-> ( 0 / y ) = 0 ) ) |
| 20 | 17 19 | syl5ibrcom | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> ( x = 0 -> ( x / y ) = 0 ) ) |
| 21 | 20 | necon3d | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> ( ( x / y ) =/= 0 -> x =/= 0 ) ) |
| 22 | simprr | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> w e. NN ) |
|
| 23 | 22 | nncnd | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> w e. CC ) |
| 24 | 22 | nnne0d | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> w =/= 0 ) |
| 25 | 23 24 | div0d | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> ( 0 / w ) = 0 ) |
| 26 | oveq1 | |- ( z = 0 -> ( z / w ) = ( 0 / w ) ) |
|
| 27 | 26 | eqeq1d | |- ( z = 0 -> ( ( z / w ) = 0 <-> ( 0 / w ) = 0 ) ) |
| 28 | 25 27 | syl5ibrcom | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> ( z = 0 -> ( z / w ) = 0 ) ) |
| 29 | 28 | necon3d | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> ( ( z / w ) =/= 0 -> z =/= 0 ) ) |
| 30 | simpll | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> P e. Prime ) |
|
| 31 | simplrl | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> x e. ZZ ) |
|
| 32 | simplrr | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> z e. ZZ ) |
|
| 33 | 31 32 | zmulcld | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( x x. z ) e. ZZ ) |
| 34 | 31 | zcnd | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> x e. CC ) |
| 35 | 32 | zcnd | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> z e. CC ) |
| 36 | simprrl | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> x =/= 0 ) |
|
| 37 | simprrr | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> z =/= 0 ) |
|
| 38 | 34 35 36 37 | mulne0d | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( x x. z ) =/= 0 ) |
| 39 | 14 | adantrr | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> y e. NN ) |
| 40 | 22 | adantrr | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> w e. NN ) |
| 41 | 39 40 | nnmulcld | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( y x. w ) e. NN ) |
| 42 | pcdiv | |- ( ( P e. Prime /\ ( ( x x. z ) e. ZZ /\ ( x x. z ) =/= 0 ) /\ ( y x. w ) e. NN ) -> ( P pCnt ( ( x x. z ) / ( y x. w ) ) ) = ( ( P pCnt ( x x. z ) ) - ( P pCnt ( y x. w ) ) ) ) |
|
| 43 | 30 33 38 41 42 | syl121anc | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( P pCnt ( ( x x. z ) / ( y x. w ) ) ) = ( ( P pCnt ( x x. z ) ) - ( P pCnt ( y x. w ) ) ) ) |
| 44 | pcmul | |- ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) /\ ( z e. ZZ /\ z =/= 0 ) ) -> ( P pCnt ( x x. z ) ) = ( ( P pCnt x ) + ( P pCnt z ) ) ) |
|
| 45 | 30 31 36 32 37 44 | syl122anc | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( P pCnt ( x x. z ) ) = ( ( P pCnt x ) + ( P pCnt z ) ) ) |
| 46 | 39 | nnzd | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> y e. ZZ ) |
| 47 | 16 | adantrr | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> y =/= 0 ) |
| 48 | 40 | nnzd | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> w e. ZZ ) |
| 49 | 24 | adantrr | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> w =/= 0 ) |
| 50 | pcmul | |- ( ( P e. Prime /\ ( y e. ZZ /\ y =/= 0 ) /\ ( w e. ZZ /\ w =/= 0 ) ) -> ( P pCnt ( y x. w ) ) = ( ( P pCnt y ) + ( P pCnt w ) ) ) |
|
| 51 | 30 46 47 48 49 50 | syl122anc | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( P pCnt ( y x. w ) ) = ( ( P pCnt y ) + ( P pCnt w ) ) ) |
| 52 | 45 51 | oveq12d | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( ( P pCnt ( x x. z ) ) - ( P pCnt ( y x. w ) ) ) = ( ( ( P pCnt x ) + ( P pCnt z ) ) - ( ( P pCnt y ) + ( P pCnt w ) ) ) ) |
| 53 | pczcl | |- ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) ) -> ( P pCnt x ) e. NN0 ) |
|
| 54 | 30 31 36 53 | syl12anc | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( P pCnt x ) e. NN0 ) |
| 55 | 54 | nn0cnd | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( P pCnt x ) e. CC ) |
| 56 | pczcl | |- ( ( P e. Prime /\ ( z e. ZZ /\ z =/= 0 ) ) -> ( P pCnt z ) e. NN0 ) |
|
| 57 | 30 32 37 56 | syl12anc | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( P pCnt z ) e. NN0 ) |
| 58 | 57 | nn0cnd | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( P pCnt z ) e. CC ) |
| 59 | 30 39 | pccld | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( P pCnt y ) e. NN0 ) |
| 60 | 59 | nn0cnd | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( P pCnt y ) e. CC ) |
| 61 | 30 40 | pccld | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( P pCnt w ) e. NN0 ) |
| 62 | 61 | nn0cnd | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( P pCnt w ) e. CC ) |
| 63 | 55 58 60 62 | addsub4d | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( ( ( P pCnt x ) + ( P pCnt z ) ) - ( ( P pCnt y ) + ( P pCnt w ) ) ) = ( ( ( P pCnt x ) - ( P pCnt y ) ) + ( ( P pCnt z ) - ( P pCnt w ) ) ) ) |
| 64 | 43 52 63 | 3eqtrd | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( P pCnt ( ( x x. z ) / ( y x. w ) ) ) = ( ( ( P pCnt x ) - ( P pCnt y ) ) + ( ( P pCnt z ) - ( P pCnt w ) ) ) ) |
| 65 | 15 | adantrr | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> y e. CC ) |
| 66 | 23 | adantrr | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> w e. CC ) |
| 67 | 34 65 35 66 47 49 | divmuldivd | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( ( x / y ) x. ( z / w ) ) = ( ( x x. z ) / ( y x. w ) ) ) |
| 68 | 67 | oveq2d | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( P pCnt ( ( x / y ) x. ( z / w ) ) ) = ( P pCnt ( ( x x. z ) / ( y x. w ) ) ) ) |
| 69 | pcdiv | |- ( ( P e. Prime /\ ( x e. ZZ /\ x =/= 0 ) /\ y e. NN ) -> ( P pCnt ( x / y ) ) = ( ( P pCnt x ) - ( P pCnt y ) ) ) |
|
| 70 | 30 31 36 39 69 | syl121anc | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( P pCnt ( x / y ) ) = ( ( P pCnt x ) - ( P pCnt y ) ) ) |
| 71 | pcdiv | |- ( ( P e. Prime /\ ( z e. ZZ /\ z =/= 0 ) /\ w e. NN ) -> ( P pCnt ( z / w ) ) = ( ( P pCnt z ) - ( P pCnt w ) ) ) |
|
| 72 | 30 32 37 40 71 | syl121anc | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( P pCnt ( z / w ) ) = ( ( P pCnt z ) - ( P pCnt w ) ) ) |
| 73 | 70 72 | oveq12d | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( ( P pCnt ( x / y ) ) + ( P pCnt ( z / w ) ) ) = ( ( ( P pCnt x ) - ( P pCnt y ) ) + ( ( P pCnt z ) - ( P pCnt w ) ) ) ) |
| 74 | 64 68 73 | 3eqtr4d | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( ( y e. NN /\ w e. NN ) /\ ( x =/= 0 /\ z =/= 0 ) ) ) -> ( P pCnt ( ( x / y ) x. ( z / w ) ) ) = ( ( P pCnt ( x / y ) ) + ( P pCnt ( z / w ) ) ) ) |
| 75 | 74 | expr | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> ( ( x =/= 0 /\ z =/= 0 ) -> ( P pCnt ( ( x / y ) x. ( z / w ) ) ) = ( ( P pCnt ( x / y ) ) + ( P pCnt ( z / w ) ) ) ) ) |
| 76 | 21 29 75 | syl2and | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> ( ( ( x / y ) =/= 0 /\ ( z / w ) =/= 0 ) -> ( P pCnt ( ( x / y ) x. ( z / w ) ) ) = ( ( P pCnt ( x / y ) ) + ( P pCnt ( z / w ) ) ) ) ) |
| 77 | neeq1 | |- ( A = ( x / y ) -> ( A =/= 0 <-> ( x / y ) =/= 0 ) ) |
|
| 78 | neeq1 | |- ( B = ( z / w ) -> ( B =/= 0 <-> ( z / w ) =/= 0 ) ) |
|
| 79 | 77 78 | bi2anan9 | |- ( ( A = ( x / y ) /\ B = ( z / w ) ) -> ( ( A =/= 0 /\ B =/= 0 ) <-> ( ( x / y ) =/= 0 /\ ( z / w ) =/= 0 ) ) ) |
| 80 | oveq12 | |- ( ( A = ( x / y ) /\ B = ( z / w ) ) -> ( A x. B ) = ( ( x / y ) x. ( z / w ) ) ) |
|
| 81 | 80 | oveq2d | |- ( ( A = ( x / y ) /\ B = ( z / w ) ) -> ( P pCnt ( A x. B ) ) = ( P pCnt ( ( x / y ) x. ( z / w ) ) ) ) |
| 82 | oveq2 | |- ( A = ( x / y ) -> ( P pCnt A ) = ( P pCnt ( x / y ) ) ) |
|
| 83 | oveq2 | |- ( B = ( z / w ) -> ( P pCnt B ) = ( P pCnt ( z / w ) ) ) |
|
| 84 | 82 83 | oveqan12d | |- ( ( A = ( x / y ) /\ B = ( z / w ) ) -> ( ( P pCnt A ) + ( P pCnt B ) ) = ( ( P pCnt ( x / y ) ) + ( P pCnt ( z / w ) ) ) ) |
| 85 | 81 84 | eqeq12d | |- ( ( A = ( x / y ) /\ B = ( z / w ) ) -> ( ( P pCnt ( A x. B ) ) = ( ( P pCnt A ) + ( P pCnt B ) ) <-> ( P pCnt ( ( x / y ) x. ( z / w ) ) ) = ( ( P pCnt ( x / y ) ) + ( P pCnt ( z / w ) ) ) ) ) |
| 86 | 79 85 | imbi12d | |- ( ( A = ( x / y ) /\ B = ( z / w ) ) -> ( ( ( A =/= 0 /\ B =/= 0 ) -> ( P pCnt ( A x. B ) ) = ( ( P pCnt A ) + ( P pCnt B ) ) ) <-> ( ( ( x / y ) =/= 0 /\ ( z / w ) =/= 0 ) -> ( P pCnt ( ( x / y ) x. ( z / w ) ) ) = ( ( P pCnt ( x / y ) ) + ( P pCnt ( z / w ) ) ) ) ) ) |
| 87 | 76 86 | syl5ibrcom | |- ( ( ( P e. Prime /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> ( ( A = ( x / y ) /\ B = ( z / w ) ) -> ( ( A =/= 0 /\ B =/= 0 ) -> ( P pCnt ( A x. B ) ) = ( ( P pCnt A ) + ( P pCnt B ) ) ) ) ) |
| 88 | 13 87 | sylanl1 | |- ( ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> ( ( A = ( x / y ) /\ B = ( z / w ) ) -> ( ( A =/= 0 /\ B =/= 0 ) -> ( P pCnt ( A x. B ) ) = ( ( P pCnt A ) + ( P pCnt B ) ) ) ) ) |
| 89 | 12 88 | mpid | |- ( ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) /\ ( x e. ZZ /\ z e. ZZ ) ) /\ ( y e. NN /\ w e. NN ) ) -> ( ( A = ( x / y ) /\ B = ( z / w ) ) -> ( P pCnt ( A x. B ) ) = ( ( P pCnt A ) + ( P pCnt B ) ) ) ) |
| 90 | 89 | rexlimdvva | |- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) /\ ( x e. ZZ /\ z e. ZZ ) ) -> ( E. y e. NN E. w e. NN ( A = ( x / y ) /\ B = ( z / w ) ) -> ( P pCnt ( A x. B ) ) = ( ( P pCnt A ) + ( P pCnt B ) ) ) ) |
| 91 | 8 90 | biimtrrid | |- ( ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) /\ ( x e. ZZ /\ z e. ZZ ) ) -> ( ( E. y e. NN A = ( x / y ) /\ E. w e. NN B = ( z / w ) ) -> ( P pCnt ( A x. B ) ) = ( ( P pCnt A ) + ( P pCnt B ) ) ) ) |
| 92 | 91 | rexlimdvva | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( E. x e. ZZ E. z e. ZZ ( E. y e. NN A = ( x / y ) /\ E. w e. NN B = ( z / w ) ) -> ( P pCnt ( A x. B ) ) = ( ( P pCnt A ) + ( P pCnt B ) ) ) ) |
| 93 | 7 92 | biimtrrid | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( ( E. x e. ZZ E. y e. NN A = ( x / y ) /\ E. z e. ZZ E. w e. NN B = ( z / w ) ) -> ( P pCnt ( A x. B ) ) = ( ( P pCnt A ) + ( P pCnt B ) ) ) ) |
| 94 | 3 6 93 | mp2and | |- ( ( P e. Prime /\ ( A e. QQ /\ A =/= 0 ) /\ ( B e. QQ /\ B =/= 0 ) ) -> ( P pCnt ( A x. B ) ) = ( ( P pCnt A ) + ( P pCnt B ) ) ) |