This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: N choose 0 is 1. Remark in Gleason p. 296. (Contributed by NM, 17-Jun-2005) (Revised by Mario Carneiro, 8-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bcn0 | |- ( N e. NN0 -> ( N _C 0 ) = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elfz | |- ( N e. NN0 -> 0 e. ( 0 ... N ) ) |
|
| 2 | bcval2 | |- ( 0 e. ( 0 ... N ) -> ( N _C 0 ) = ( ( ! ` N ) / ( ( ! ` ( N - 0 ) ) x. ( ! ` 0 ) ) ) ) |
|
| 3 | 1 2 | syl | |- ( N e. NN0 -> ( N _C 0 ) = ( ( ! ` N ) / ( ( ! ` ( N - 0 ) ) x. ( ! ` 0 ) ) ) ) |
| 4 | nn0cn | |- ( N e. NN0 -> N e. CC ) |
|
| 5 | 4 | subid1d | |- ( N e. NN0 -> ( N - 0 ) = N ) |
| 6 | 5 | fveq2d | |- ( N e. NN0 -> ( ! ` ( N - 0 ) ) = ( ! ` N ) ) |
| 7 | fac0 | |- ( ! ` 0 ) = 1 |
|
| 8 | oveq12 | |- ( ( ( ! ` ( N - 0 ) ) = ( ! ` N ) /\ ( ! ` 0 ) = 1 ) -> ( ( ! ` ( N - 0 ) ) x. ( ! ` 0 ) ) = ( ( ! ` N ) x. 1 ) ) |
|
| 9 | 6 7 8 | sylancl | |- ( N e. NN0 -> ( ( ! ` ( N - 0 ) ) x. ( ! ` 0 ) ) = ( ( ! ` N ) x. 1 ) ) |
| 10 | faccl | |- ( N e. NN0 -> ( ! ` N ) e. NN ) |
|
| 11 | 10 | nncnd | |- ( N e. NN0 -> ( ! ` N ) e. CC ) |
| 12 | 11 | mulridd | |- ( N e. NN0 -> ( ( ! ` N ) x. 1 ) = ( ! ` N ) ) |
| 13 | 9 12 | eqtrd | |- ( N e. NN0 -> ( ( ! ` ( N - 0 ) ) x. ( ! ` 0 ) ) = ( ! ` N ) ) |
| 14 | 13 | oveq2d | |- ( N e. NN0 -> ( ( ! ` N ) / ( ( ! ` ( N - 0 ) ) x. ( ! ` 0 ) ) ) = ( ( ! ` N ) / ( ! ` N ) ) ) |
| 15 | facne0 | |- ( N e. NN0 -> ( ! ` N ) =/= 0 ) |
|
| 16 | 11 15 | dividd | |- ( N e. NN0 -> ( ( ! ` N ) / ( ! ` N ) ) = 1 ) |
| 17 | 14 16 | eqtrd | |- ( N e. NN0 -> ( ( ! ` N ) / ( ( ! ` ( N - 0 ) ) x. ( ! ` 0 ) ) ) = 1 ) |
| 18 | 3 17 | eqtrd | |- ( N e. NN0 -> ( N _C 0 ) = 1 ) |