This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership of a difference in a finite set of sequential integers. (Contributed by NM, 30-Jul-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzsubel | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( J e. ZZ /\ K e. ZZ ) ) -> ( J e. ( M ... N ) <-> ( J - K ) e. ( ( M - K ) ... ( N - K ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znegcl | |- ( K e. ZZ -> -u K e. ZZ ) |
|
| 2 | fzaddel | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( J e. ZZ /\ -u K e. ZZ ) ) -> ( J e. ( M ... N ) <-> ( J + -u K ) e. ( ( M + -u K ) ... ( N + -u K ) ) ) ) |
|
| 3 | 1 2 | sylanr2 | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( J e. ZZ /\ K e. ZZ ) ) -> ( J e. ( M ... N ) <-> ( J + -u K ) e. ( ( M + -u K ) ... ( N + -u K ) ) ) ) |
| 4 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 5 | zcn | |- ( N e. ZZ -> N e. CC ) |
|
| 6 | 4 5 | anim12i | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M e. CC /\ N e. CC ) ) |
| 7 | zcn | |- ( J e. ZZ -> J e. CC ) |
|
| 8 | zcn | |- ( K e. ZZ -> K e. CC ) |
|
| 9 | 7 8 | anim12i | |- ( ( J e. ZZ /\ K e. ZZ ) -> ( J e. CC /\ K e. CC ) ) |
| 10 | negsub | |- ( ( J e. CC /\ K e. CC ) -> ( J + -u K ) = ( J - K ) ) |
|
| 11 | 10 | adantl | |- ( ( ( M e. CC /\ N e. CC ) /\ ( J e. CC /\ K e. CC ) ) -> ( J + -u K ) = ( J - K ) ) |
| 12 | negsub | |- ( ( M e. CC /\ K e. CC ) -> ( M + -u K ) = ( M - K ) ) |
|
| 13 | negsub | |- ( ( N e. CC /\ K e. CC ) -> ( N + -u K ) = ( N - K ) ) |
|
| 14 | 12 13 | oveqan12d | |- ( ( ( M e. CC /\ K e. CC ) /\ ( N e. CC /\ K e. CC ) ) -> ( ( M + -u K ) ... ( N + -u K ) ) = ( ( M - K ) ... ( N - K ) ) ) |
| 15 | 14 | anandirs | |- ( ( ( M e. CC /\ N e. CC ) /\ K e. CC ) -> ( ( M + -u K ) ... ( N + -u K ) ) = ( ( M - K ) ... ( N - K ) ) ) |
| 16 | 15 | adantrl | |- ( ( ( M e. CC /\ N e. CC ) /\ ( J e. CC /\ K e. CC ) ) -> ( ( M + -u K ) ... ( N + -u K ) ) = ( ( M - K ) ... ( N - K ) ) ) |
| 17 | 11 16 | eleq12d | |- ( ( ( M e. CC /\ N e. CC ) /\ ( J e. CC /\ K e. CC ) ) -> ( ( J + -u K ) e. ( ( M + -u K ) ... ( N + -u K ) ) <-> ( J - K ) e. ( ( M - K ) ... ( N - K ) ) ) ) |
| 18 | 6 9 17 | syl2an | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( J e. ZZ /\ K e. ZZ ) ) -> ( ( J + -u K ) e. ( ( M + -u K ) ... ( N + -u K ) ) <-> ( J - K ) e. ( ( M - K ) ... ( N - K ) ) ) ) |
| 19 | 3 18 | bitrd | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( J e. ZZ /\ K e. ZZ ) ) -> ( J e. ( M ... N ) <-> ( J - K ) e. ( ( M - K ) ... ( N - K ) ) ) ) |