This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: P ^ A divides N if and only if A is at most the count of P . (Contributed by Mario Carneiro, 3-Oct-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pcdvdsb | |- ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) -> ( A <_ ( P pCnt N ) <-> ( P ^ A ) || N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( N = 0 -> ( P pCnt N ) = ( P pCnt 0 ) ) |
|
| 2 | 1 | breq2d | |- ( N = 0 -> ( A <_ ( P pCnt N ) <-> A <_ ( P pCnt 0 ) ) ) |
| 3 | breq2 | |- ( N = 0 -> ( ( P ^ A ) || N <-> ( P ^ A ) || 0 ) ) |
|
| 4 | 2 3 | bibi12d | |- ( N = 0 -> ( ( A <_ ( P pCnt N ) <-> ( P ^ A ) || N ) <-> ( A <_ ( P pCnt 0 ) <-> ( P ^ A ) || 0 ) ) ) |
| 5 | simpl3 | |- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> A e. NN0 ) |
|
| 6 | 5 | nn0zd | |- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> A e. ZZ ) |
| 7 | simpl1 | |- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> P e. Prime ) |
|
| 8 | simpl2 | |- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> N e. ZZ ) |
|
| 9 | simpr | |- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> N =/= 0 ) |
|
| 10 | pczcl | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P pCnt N ) e. NN0 ) |
|
| 11 | 7 8 9 10 | syl12anc | |- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( P pCnt N ) e. NN0 ) |
| 12 | 11 | nn0zd | |- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( P pCnt N ) e. ZZ ) |
| 13 | eluz | |- ( ( A e. ZZ /\ ( P pCnt N ) e. ZZ ) -> ( ( P pCnt N ) e. ( ZZ>= ` A ) <-> A <_ ( P pCnt N ) ) ) |
|
| 14 | 6 12 13 | syl2anc | |- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( ( P pCnt N ) e. ( ZZ>= ` A ) <-> A <_ ( P pCnt N ) ) ) |
| 15 | prmnn | |- ( P e. Prime -> P e. NN ) |
|
| 16 | 7 15 | syl | |- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> P e. NN ) |
| 17 | 16 | nnzd | |- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> P e. ZZ ) |
| 18 | dvdsexp | |- ( ( P e. ZZ /\ A e. NN0 /\ ( P pCnt N ) e. ( ZZ>= ` A ) ) -> ( P ^ A ) || ( P ^ ( P pCnt N ) ) ) |
|
| 19 | 18 | 3expia | |- ( ( P e. ZZ /\ A e. NN0 ) -> ( ( P pCnt N ) e. ( ZZ>= ` A ) -> ( P ^ A ) || ( P ^ ( P pCnt N ) ) ) ) |
| 20 | 17 5 19 | syl2anc | |- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( ( P pCnt N ) e. ( ZZ>= ` A ) -> ( P ^ A ) || ( P ^ ( P pCnt N ) ) ) ) |
| 21 | 14 20 | sylbird | |- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( A <_ ( P pCnt N ) -> ( P ^ A ) || ( P ^ ( P pCnt N ) ) ) ) |
| 22 | pczdvds | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( P ^ ( P pCnt N ) ) || N ) |
|
| 23 | 7 8 9 22 | syl12anc | |- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( P ^ ( P pCnt N ) ) || N ) |
| 24 | nnexpcl | |- ( ( P e. NN /\ A e. NN0 ) -> ( P ^ A ) e. NN ) |
|
| 25 | 15 24 | sylan | |- ( ( P e. Prime /\ A e. NN0 ) -> ( P ^ A ) e. NN ) |
| 26 | 25 | 3adant2 | |- ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) -> ( P ^ A ) e. NN ) |
| 27 | 26 | nnzd | |- ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) -> ( P ^ A ) e. ZZ ) |
| 28 | 27 | adantr | |- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( P ^ A ) e. ZZ ) |
| 29 | 16 11 | nnexpcld | |- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( P ^ ( P pCnt N ) ) e. NN ) |
| 30 | 29 | nnzd | |- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( P ^ ( P pCnt N ) ) e. ZZ ) |
| 31 | dvdstr | |- ( ( ( P ^ A ) e. ZZ /\ ( P ^ ( P pCnt N ) ) e. ZZ /\ N e. ZZ ) -> ( ( ( P ^ A ) || ( P ^ ( P pCnt N ) ) /\ ( P ^ ( P pCnt N ) ) || N ) -> ( P ^ A ) || N ) ) |
|
| 32 | 28 30 8 31 | syl3anc | |- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( ( ( P ^ A ) || ( P ^ ( P pCnt N ) ) /\ ( P ^ ( P pCnt N ) ) || N ) -> ( P ^ A ) || N ) ) |
| 33 | 23 32 | mpan2d | |- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( ( P ^ A ) || ( P ^ ( P pCnt N ) ) -> ( P ^ A ) || N ) ) |
| 34 | 21 33 | syld | |- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( A <_ ( P pCnt N ) -> ( P ^ A ) || N ) ) |
| 35 | nn0re | |- ( ( P pCnt N ) e. NN0 -> ( P pCnt N ) e. RR ) |
|
| 36 | nn0re | |- ( A e. NN0 -> A e. RR ) |
|
| 37 | ltnle | |- ( ( ( P pCnt N ) e. RR /\ A e. RR ) -> ( ( P pCnt N ) < A <-> -. A <_ ( P pCnt N ) ) ) |
|
| 38 | 35 36 37 | syl2an | |- ( ( ( P pCnt N ) e. NN0 /\ A e. NN0 ) -> ( ( P pCnt N ) < A <-> -. A <_ ( P pCnt N ) ) ) |
| 39 | nn0ltp1le | |- ( ( ( P pCnt N ) e. NN0 /\ A e. NN0 ) -> ( ( P pCnt N ) < A <-> ( ( P pCnt N ) + 1 ) <_ A ) ) |
|
| 40 | 38 39 | bitr3d | |- ( ( ( P pCnt N ) e. NN0 /\ A e. NN0 ) -> ( -. A <_ ( P pCnt N ) <-> ( ( P pCnt N ) + 1 ) <_ A ) ) |
| 41 | 11 5 40 | syl2anc | |- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( -. A <_ ( P pCnt N ) <-> ( ( P pCnt N ) + 1 ) <_ A ) ) |
| 42 | peano2nn0 | |- ( ( P pCnt N ) e. NN0 -> ( ( P pCnt N ) + 1 ) e. NN0 ) |
|
| 43 | 11 42 | syl | |- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( ( P pCnt N ) + 1 ) e. NN0 ) |
| 44 | 43 | nn0zd | |- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( ( P pCnt N ) + 1 ) e. ZZ ) |
| 45 | eluz | |- ( ( ( ( P pCnt N ) + 1 ) e. ZZ /\ A e. ZZ ) -> ( A e. ( ZZ>= ` ( ( P pCnt N ) + 1 ) ) <-> ( ( P pCnt N ) + 1 ) <_ A ) ) |
|
| 46 | 44 6 45 | syl2anc | |- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( A e. ( ZZ>= ` ( ( P pCnt N ) + 1 ) ) <-> ( ( P pCnt N ) + 1 ) <_ A ) ) |
| 47 | dvdsexp | |- ( ( P e. ZZ /\ ( ( P pCnt N ) + 1 ) e. NN0 /\ A e. ( ZZ>= ` ( ( P pCnt N ) + 1 ) ) ) -> ( P ^ ( ( P pCnt N ) + 1 ) ) || ( P ^ A ) ) |
|
| 48 | 47 | 3expia | |- ( ( P e. ZZ /\ ( ( P pCnt N ) + 1 ) e. NN0 ) -> ( A e. ( ZZ>= ` ( ( P pCnt N ) + 1 ) ) -> ( P ^ ( ( P pCnt N ) + 1 ) ) || ( P ^ A ) ) ) |
| 49 | 17 43 48 | syl2anc | |- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( A e. ( ZZ>= ` ( ( P pCnt N ) + 1 ) ) -> ( P ^ ( ( P pCnt N ) + 1 ) ) || ( P ^ A ) ) ) |
| 50 | 46 49 | sylbird | |- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( ( ( P pCnt N ) + 1 ) <_ A -> ( P ^ ( ( P pCnt N ) + 1 ) ) || ( P ^ A ) ) ) |
| 51 | pczndvds | |- ( ( P e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> -. ( P ^ ( ( P pCnt N ) + 1 ) ) || N ) |
|
| 52 | 7 8 9 51 | syl12anc | |- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> -. ( P ^ ( ( P pCnt N ) + 1 ) ) || N ) |
| 53 | 16 43 | nnexpcld | |- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( P ^ ( ( P pCnt N ) + 1 ) ) e. NN ) |
| 54 | 53 | nnzd | |- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( P ^ ( ( P pCnt N ) + 1 ) ) e. ZZ ) |
| 55 | dvdstr | |- ( ( ( P ^ ( ( P pCnt N ) + 1 ) ) e. ZZ /\ ( P ^ A ) e. ZZ /\ N e. ZZ ) -> ( ( ( P ^ ( ( P pCnt N ) + 1 ) ) || ( P ^ A ) /\ ( P ^ A ) || N ) -> ( P ^ ( ( P pCnt N ) + 1 ) ) || N ) ) |
|
| 56 | 54 28 8 55 | syl3anc | |- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( ( ( P ^ ( ( P pCnt N ) + 1 ) ) || ( P ^ A ) /\ ( P ^ A ) || N ) -> ( P ^ ( ( P pCnt N ) + 1 ) ) || N ) ) |
| 57 | 52 56 | mtod | |- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> -. ( ( P ^ ( ( P pCnt N ) + 1 ) ) || ( P ^ A ) /\ ( P ^ A ) || N ) ) |
| 58 | imnan | |- ( ( ( P ^ ( ( P pCnt N ) + 1 ) ) || ( P ^ A ) -> -. ( P ^ A ) || N ) <-> -. ( ( P ^ ( ( P pCnt N ) + 1 ) ) || ( P ^ A ) /\ ( P ^ A ) || N ) ) |
|
| 59 | 57 58 | sylibr | |- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( ( P ^ ( ( P pCnt N ) + 1 ) ) || ( P ^ A ) -> -. ( P ^ A ) || N ) ) |
| 60 | 50 59 | syld | |- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( ( ( P pCnt N ) + 1 ) <_ A -> -. ( P ^ A ) || N ) ) |
| 61 | 41 60 | sylbid | |- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( -. A <_ ( P pCnt N ) -> -. ( P ^ A ) || N ) ) |
| 62 | 34 61 | impcon4bid | |- ( ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) /\ N =/= 0 ) -> ( A <_ ( P pCnt N ) <-> ( P ^ A ) || N ) ) |
| 63 | 36 | 3ad2ant3 | |- ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) -> A e. RR ) |
| 64 | 63 | rexrd | |- ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) -> A e. RR* ) |
| 65 | pnfge | |- ( A e. RR* -> A <_ +oo ) |
|
| 66 | 64 65 | syl | |- ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) -> A <_ +oo ) |
| 67 | pc0 | |- ( P e. Prime -> ( P pCnt 0 ) = +oo ) |
|
| 68 | 67 | 3ad2ant1 | |- ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) -> ( P pCnt 0 ) = +oo ) |
| 69 | 66 68 | breqtrrd | |- ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) -> A <_ ( P pCnt 0 ) ) |
| 70 | dvds0 | |- ( ( P ^ A ) e. ZZ -> ( P ^ A ) || 0 ) |
|
| 71 | 27 70 | syl | |- ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) -> ( P ^ A ) || 0 ) |
| 72 | 69 71 | 2thd | |- ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) -> ( A <_ ( P pCnt 0 ) <-> ( P ^ A ) || 0 ) ) |
| 73 | 4 62 72 | pm2.61ne | |- ( ( P e. Prime /\ N e. ZZ /\ A e. NN0 ) -> ( A <_ ( P pCnt N ) <-> ( P ^ A ) || N ) ) |